23

Europe

Coordinating Lead Authors:

R. Sari Kovats (UK), Riccardo Valentini (Italy)

Lead Authors:

Laurens M. Bouwer (Netherlands), Elena Georgopoulou (Greece), Daniela Jacob (Germany), Eric Martin (France), Mark Rounsevell (UK), Jean-Francois Soussana (France)

Contributing Authors:

Martin Beniston (Switzerland), Maria Vincenza Chiriacò (Italy), Philippe Cury (France), Michael Davies (UK), Paula Harrison (UK), Olaf Jonkeren (Netherlands), Mark Koetse (Netherlands), Markus Lindner (Finland), Andreas Matzarakis (Greece/Germany), Reinhard Mechler (Germany), Annette Menzel (Germany), Marc Metzger (UK), Luca Montanarella (Italy), Antonio Navarra (Italy), Juliane Petersen (Germany), Martin Price (UK), Boris Revich (Russian Federation), Piet Rietveld (Netherlands), Cristina Sabbioni (Italy), Yannis Sarafidis (Greece), Vegard Skirbekk (Austria), Donatella Spano (Italy), Jan E. Vermaat (Netherlands), Paul Watkiss (UK), Meriwether Wilson (UK), Thomasz Zylicz (Poland)

Review Editors:

Lucka Kajfez Bogataj (Slovenia), Roman Corobov (Moldova), Ramón Vallejo (Spain)

This chapter should be cited as:

Kovats, R.S., R. Valentini, L.M. Bouwer, E. Georgopoulou, D. Jacob, E. Martin, M. Rounsevell, and J.-F. Soussana, 2014: Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267-1326.

Table of Contents

Execu	ıtive Summary	1270
23.1.	Introduction	1274
	23.1.1. Scope and Route Map of Chapter	1274
	23.1.2. Policy Frameworks	1274
	23.1.3. Conclusions from Previous Assessments	1274
23.2.	Current and Future Trends	1275
	23.2.1 Non-Climate Trends	1275
	23.2.2. Observed and Projected Climate Change	1275
	23.2.2.1. Observed Climate Change	1275
	23.2.2.2. Projected Climate Changes	1276
	23.2.2.3. Projected Changes in Climate Extremes	1276
	23.2.3. Observed and Projected Trends in Riverflow and Drought	1279
23.3.	Implications of Climate Change for Production Systems and Physical Infrastructure	1279
	23.3.1. Settlements	1279
	23.3.1.1. Coastal Flooding	1279
	23.3.1.2. River and Pluvial Flooding	1280
	23.3.1.3. Windstorms	1281
	23.3.1.4. Mass Movements and Avalanches	1281
	23.3.2. Built Environment	1281
	23.3.3. Transport	1281
	23.3.4. Energy Production, Transmission, and Use	1282
	23.3.5. Industry and Manufacturing	1283
	23.3.6. Tourism	1283
	23.3.7. Insurance and Banking	1283
23.4.	Implications of Climate Change for Agriculture, Fisheries, Forestry, and Bioenergy Production	1284
	23.4.1. Plant (Food) Production	1284
	23.4.2. Livestock Production	1286
	23.4.3. Water Resources and Agriculture	1286
	23.4.4. Forestry	1287
	23.4.5. Bioenergy Production	1288
	Box 23-1. Assessment of Climate Change Impacts on Ecosystem Services by Sub-region	1288
	23.4.6. Fisheries and Aquaculture	1290
23.5.	Implications of Climate Change for Health and Social Welfare	1290
	23.5.1. Human Population Health	1290
	23.5.2. Critical Infrastructure	1291

	23.5.3. Social Impacts	1291
	23.5.4. Cultural Heritage and Landscapes	1292
	Box 23-2. Implications of Climate Change for European Wine and Vineyards	1292
23.6.	Implications of Climate Change for the Protection of Environmental Quality and Biological Conservation	1293
	23.6.1. Air Quality	1293
	23.6.2. Soil Quality and Land Degradation	1293
	23.6.3. Water Quality	1294
	23.6.4. Terrestrial and Freshwater Ecosystems	1294
	23.6.5. Coastal and Marine Ecosystems	1294
23.7.	Cross-Sectoral Adaptation Decision Making and Risk Management	1295
	Box 23-3. National and Local Adaptation Strategies	1295
	23.7.1. Coastal Zone Management	1296
	23.7.2. Integrated Water Resource Management	1296
	23.7.3. Disaster Risk Reduction and Risk Management	1296
	23.7.4. Land Use Planning	1296
	23.7.5. Rural Development	1297
	23.7.6. Economic Assessments of Adaptation	1297
	23.7.7. Barriers and Limits to Adaptation	1298
23.8.	Co-benefits and Unintended Consequences of Adaptation and Mitigation	1298
	23.8.1. Production and Infrastructure	1298
	23.8.2. Agriculture, Forestry, and Bioenergy	1299
	23.8.3. Social and Health Impacts	1299
	23.8.4. Environmental Quality and Biological Conservation	1299
23.9.	Synthesis of Key Findings	1300
	23.9.1. Key Vulnerabilities	1300
	23.9.2. Climate Change Impacts Outside Europe and Inter-regional Implications	1303
	23.9.3. Effects of Observed Climate Change in Europe	1303
	23.9.4. Key Knowledge Gaps and Research Needs	1304
Refer	rences	1306
Frequ	uently Asked Questions	
	23.1: Will I still be able to live on the coast in Europe?	1305
	23.2: Will climate change introduce new infectious diseases into Europe?	
	23.3: Will Europe need to import more food because of climate change?	1305

23

Chapter 23 Europe

Executive Summary

Observed climate trends and future climate projections show regionally varying changes in temperature and rainfall in Europe (high confidence), {23.2.2} in agreement with Fourth Assessment Report (AR4) findings, with projected increases in temperature throughout Europe and increasing precipitation in Northern Europe and decreasing precipitation in Southern Europe. {23.2.2.2} Climate projections show a marked increase in high temperature extremes (high confidence), meteorological droughts (medium confidence), {23.2.2.3} and heavy precipitation events (high confidence), {23.2.2.3} with variations across Europe, and small or no changes in wind speed extremes (low confidence) except increases in winter wind speed extremes over Central and Northern Europe (medium confidence). {23.2.2.3}

Observed climate change in Europe has had wide ranging effects throughout the European region including the distribution, phenology, and abundance of animal, fish, and plant species (high confidence) {23.6.4-5; Table 23-6}; stagnating wheat yields in some sub-regions (medium confidence, limited evidence) {23.4.1}; and forest decline in some sub-regions (medium confidence). {23.4.4} Climate change has affected both human health (from increased heat waves) (medium confidence) {23.5.1} and animal health (changes in infectious diseases) (high confidence). {23.4.2} There is less evidence of impacts on social systems attributable to observed climate change, except in pastoralist populations (low confidence). {23.5.3}

Climate change will increase the likelihood of systemic failures across European countries caused by extreme climate events affecting multiple sectors (*medium confidence*). {23.2.2.3, 23.2.3, 23.3-6, 23.9.1} Extreme weather events currently have significant impacts in Europe in multiple economic sectors as well as adverse social and health effects (*high confidence*). {Table 23-1} There is limited evidence that resilience to heat waves and fires has improved in Europe (*medium confidence*), {23.9.1, 23.5} while some countries have improved their flood protection following major flood events. {23.9.1, 23.7.3} Climate change is *very likely* to increase the frequency and intensity of heat waves, particularly in Southern Europe (*high confidence*), {23.2.2} with mostly adverse implications for health, agriculture, forestry, energy production and use, transport, tourism, labor productivity, and the built environment. {23.3.2-4, 23.3.6, 23.4.1-4, 23.5.1; Table 23-1}

The provision of ecosystem services is projected to decline across all service categories in response to climate change in Southern Europe (high confidence). {23.9.1; Box 23-1} Both gains and losses in the provision of ecosystem services are projected for the other European sub-regions (high confidence), but the provision of cultural services is projected to decline in the Continental, Northern, and Southern sub-regions (low confidence). {Box 23-1}

Climate change is expected to impede economic activity in Southern Europe more than in other sub-regions (*medium confidence*) {23.9.1; Table 23-4}, and may increase future intra-regional disparity (*low confidence*). {23.9.1} There are also important differences in vulnerability within sub-regions; for example, plant species and some economic sectors are most vulnerable in high mountain areas due to lack of adaptation options (*medium confidence*). {23.9.1} Southern Europe is particularly vulnerable to climate change (*high confidence*), as multiple sectors will be adversely affected (tourism, agriculture, forestry, infrastructure, energy, population health) (*high confidence*). {23.9; Table 23-4}

The impacts of sea level rise on populations and infrastructure in coastal regions can be reduced by adaptation (*medium* confidence). {23.3.1, 23.5.3} Populations in urban areas are particularly vulnerable to climate change impacts because of the high density of people and built infrastructure (*medium confidence*). {23.3, 23.5.1}

Synthesis of evidence across sectors and sub-regions confirm that there are limits to adaptation from physical, social, economic, and technological factors (high confidence). {23.7; Table 23-3} Adaptation is further impeded because climate change affects multiple sectors. {23.7} The majority of published assessments are based on climate projections in the range 1°C to 4°C global mean temperature per century. Limited evidence exists regarding the potential impacts in Europe under high rates of warming (>4°C global mean temperature per century). {23.9.1}

Impacts by Sector

Sea level rise and increases in extreme rainfall are projected to further increase coastal and river flood risk in Europe and, without adaptive measures, will substantially increase flood damages (people affected and economic losses) (high confidence). {23.3.1, 23.5.1} Adaptation can prevent most of the projected damages (high confidence, based on medium evidence, high agreement) but there may be constraints to building flood defenses in some areas. {23.3.1, 23.7.1} Direct economic river flood damages in Europe have increased over recent decades (high confidence) but this increase is due to development in flood zones and not due to observed climate change. {23.3.1.2; SREX 4.5} Some areas in Europe show changes in river flood occurrence related to observed changes in extreme river discharge (medium confidence). {23.2.3}

Climate change is projected to affect the impacts of hot and cold weather extremes on transport leading to economic damage and/or adaptation costs, as well as some benefits (e.g., reduction of maintenance costs) during winter (medium confidence). {23.3.3} Climate change is projected to reduce severe accidents in road transport (medium confidence) and adversely affect inland water transport in summer in some rivers (e.g., the Rhine) after 2050 (medium confidence). Damages to rail infrastructure from high temperatures may also increase (medium confidence). Adaptation through maintenance and operational measures can reduce adverse impacts to some extent.

Climate change is expected to affect future energy production and transmission. {23.3.4} Hydropower production is *likely* to decrease in all sub-regions except Scandinavia (*high confidence*). {23.3.4} Climate change is *unlikely* to affect wind energy production before 2050 (*medium confidence*) but will have a negative impact in summer and a varied impact in winter after 2050 (*medium confidence*). Climate change is *likely* to decrease thermal power production during summer (*high confidence*). {23.3.4} Climate change will increase the problems associated with overheating in buildings (*medium confidence*). {23.3.2} Although climate change is *very likely* to decrease space heating demand (*high confidence*), cooling demand will increase (*very high confidence*) although income growth mostly drives projected cooling demand up to 2050 (*medium confidence*). {23.3.4} More energy-efficient buildings and cooling systems as well as demand-side management will reduce future energy demands. {23.3.4}

After 2050, tourism activity is projected to decrease in Southern Europe (*low confidence*) and increase in Northern and Continental Europe (*medium confidence*). No significant impacts on the tourism sector are projected before 2050 in winter or summer tourism except for ski tourism in low-altitude sites and under limited adaptation (*medium confidence*). {23.3.6} Artificial snowmaking may prolong the activity of some ski resorts (*medium confidence*). {23.3.6}

Climate change is *likely* to increase cereal yields in Northern Europe (*medium confidence*, disagreement) but decrease yields in Southern Europe (*high confidence*). {23.4.1} In Northern Europe, climate change is *very likely* to extend the seasonal activity of pests and plant diseases (*high confidence*). {23.4.1} Yields of some arable crop species like wheat have been negatively affected by observed warming in some European countries since the 1980s (*medium confidence*, limited evidence). {23.4.1} Compared to AR4, new evidence regarding future yields in Northern Europe is less consistent regarding the magnitude and sign of change. Climate change may adversely affect dairy production in Southern Europe because of heat stress in lactating cows (*medium confidence*). {23.4.2} Climate change has contributed to vector-borne disease in ruminants in Europe (*high confidence*) {23.4.2} and northward expansion of tick disease vectors (*medium confidence*). {23.4.2, 23.5.1}

Climate change will increase irrigation needs (*high confidence*) but future irrigation will be constrained by reduced runoff, demand from other sectors, and by economic costs. {23.4.1, 23.4.3} By the 2050s, irrigation will not be sufficient to prevent damage from heat waves to crops in some sub-regions (*medium confidence*). System costs will increase under all climate scenarios (*high confidence*). {23.4.3} Integrated management of water, also across countries' boundaries, is needed to address future competing demands among agriculture, energy, conservation, and human settlements. {23.7.2}

As a result of increased evaporative demand, climate change is *likely* to significantly reduce water availability from river abstraction and from groundwater resources (*medium confidence*), in the context of increased demand (from agriculture, energy and industry, and domestic use) and cross-sectoral implications that are not fully understood. {23.4.3, 23.9.1} Some adaptation is possible through uptake of more water-efficient technologies and water-saving strategies. {23.4.3, 23.7.2}

Climate change will change the geographic distribution of wine grape varieties (*high confidence*) and this will reduce the value of wine products and the livelihoods of local wine communities in Southern and Continental Europe (*medium confidence*) and increase production in Northern Europe (*low confidence*). {23.4.1, 23.3.5, 23.5.4; Box 23-2} Some adaptation is possible through technologies and good practice. {Box 23-2}

Climate warming will increase forest productivity in Northern Europe (medium confidence), {23.4.4} although damage from pests and diseases in all sub-regions will increase due to climate change (high confidence). {23.4.4} Wildfire risk in Southern Europe (high confidence) and damages from storms in Central Europe (low confidence) may also increase due to climate change. {23.4.4} Climate change is likely to cause ecological and socioeconomic damages from shifts in forest tree species range (from southwest to northeast) (medium confidence), and in pest species distributions (low confidence). {23.4.4} Forest management measures can enhance ecosystem resilience (medium confidence). {23.4.4}

Observed warming has shifted marine fish species ranges to higher latitudes (high confidence) and reduced body size in species (medium confidence). {23.4.6} There is limited and diverging evidence on climate change impacts on net fisheries economic turnover. Local economic impacts attributable to climate change will depend on the market value of (high temperature tolerant) invasive species. {23.4.6} Climate change is unlikely to entail relocation of fishing fleets (high confidence). {23.4.6} Observed higher water temperatures have adversely affected both wild and farmed freshwater salmon production in the southern part of their distribution (high confidence). {23.4.6} High temperatures may increase the frequency of harmful algal blooms (low confidence). {23.4.6}

Climate change will affect bioenergy cultivation patterns in Europe by shifting northward their potential area of production (medium confidence). {23.4.5} Elevated atmospheric carbon dioxide (CO₂) can improve drought tolerance of bioenergy crop species due to improved plant water use, maintaining high yields in future climate scenarios in temperate regions (low confidence). {23.4.5}

Climate change is *likely* to affect human health in Europe. Heat-related deaths and injuries are *likely* to increase, particularly in Southern Europe (*medium confidence*). {23.5.1} Climate change may change the distribution and seasonal pattern of some human infections, including those transmitted by arthropods (*medium confidence*), and increase the risk of introduction of new infectious diseases (*low confidence*). {23.5.1}

Climate change and sea level rise may damage European cultural heritage, including buildings, local industries, landscapes, archaeological sites, and iconic places (medium confidence), and some cultural landscapes may be lost forever (low confidence). {23.5.4; Table 23-3}

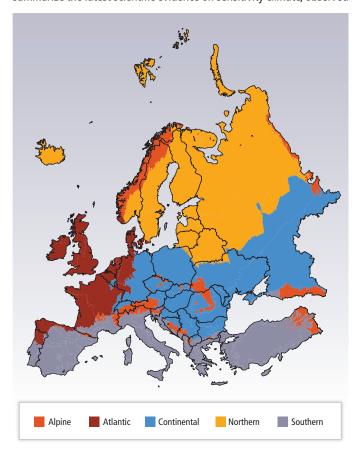
Climate change may adversely affect background levels of tropospheric ozone (*low confidence*; *limited evidence*, *low agreement*), assuming no change in emissions, but the implications for future particulate pollution (which is more health-damaging) are very uncertain. {23.6.1} Higher temperatures may have affected trends in ground level tropospheric ozone (*low confidence*). {23.6.1} Climate change is *likely* to decrease surface water quality due to higher temperatures and changes in precipitation patterns (*medium confidence*), {23.6.3} and is *likely* to increase soil salinity in coastal regions (*low confidence*). {23.6.2} Climate change may also increase soil erosion (from increased extreme events) and reduce soil fertility (*low confidence*, limited evidence). {23.6.2}

Observed climate change is affecting a wide range of flora and fauna, including plant pests and diseases (*high confidence*) {23.4.1, 23.4.4, 23.6.4} and the disease vectors and hosts (*medium confidence*). {23.4.2} Climate change is *very likely* to cause changes in habitats and species, with local extinctions (*high confidence*) and continental-scale shifts in species distributions (*medium confidence*). {23.6.4} The habitat of alpine plants is *very likely* to be significantly reduced (*high confidence*). {23.6.4} Phenological mismatch will constrain both terrestrial and marine ecosystem functioning under climate change (*high confidence*), {23.6.4-5} with a reduction in some ecosystem services (*low confidence*). {23.6.4; Box 23-1} The introduction and expansion of invasive species, especially those with high migration rates, from outside Europe is *likely* to increase with climate change (*medium confidence*). {23.6.4} Climate change is *likely* to entail the loss or displacement of coastal wetlands (*high confidence*). {23.6.5} Climate change threatens the effectiveness of European conservation areas (*low confidence*), {23.6.4} and stresses the need for habitat connectivity through specific conservation policies. {23.6.4}

Adaptation

The capacity to adapt in Europe is high compared to other world regions, but there are important differences in impacts and in the capacity to respond between and within the European sub-regions. In Europe, adaptation policy has been developed at international (European Union), national, and local government levels, {23.7} including the prioritization of adaptation options. There is limited systematic information on current implementation or effectiveness of adaptation measures or policies. {Box 23-3} Some adaptation planning has been integrated into coastal and water management, as well as disaster risk management. {23.7.1-3} There is limited evidence of adaptation planning in rural development or land use planning. {23.7.4-5}

Adaptation will incur a cost, estimated from detailed bottom-up sector-specific studies for coastal defenses, energy production, energy use, and agriculture. {23.7.6} The costs of adapting buildings (houses, schools, hospitals) and upgrading flood defenses increase under all scenarios relative to no climate change (*high confidence*). {23.3.2} Some impacts will be unavoidable owing to limits (physical, technological, social, economic, or political). {23.7.7; Table 23-3}


There is also emerging evidence regarding opportunities and unintended consequences of policies, strategies, and measures that address adaptation and/or mitigation goals. {23.8} Some agricultural practices can reduce greenhouse gas (GHG) emissions and also increase resilience of crops to temperature and rainfall variability. {23.8.2} There is evidence for unintended consequences of mitigation policies in the built environment (especially dwellings) and energy sector (medium confidence). {23.8.1} Low-carbon policies in the transport and energy sectors to reduce emissions are associated with large benefits to human health (high confidence). {23.8.3}

23.1. Introduction

This chapter reviews the scientific evidence published since the IPCC Fourth Assessment Report (AR4) on observed and projected impacts of anthropogenic climate change in Europe and adaptation responses. The geographical scope of this chapter is the same as in AR4 with the inclusion of Turkey. Thus, the European region includes all countries from Iceland in the west to the Russian Federation (west of the Urals) and the Caspian Sea in the east, and from the northern shores of the Mediterranean and Black Seas and the Caucasus in the south to the Arctic Ocean in the north. Impacts above the Arctic Circle are addressed in Chapter 28 and impacts in the Baltic and Mediterranean Seas in Chapter 30. Impacts in Malta, Cyprus, and other island states in Europe are discussed in Chapter 29. The European region has been divided into five sub-regions (see Figure 23-1): Atlantic, Alpine, Southern, Northern, and Continental. The sub-regions are derived by aggregating the climate zones developed by Metzger et al. (2005) and therefore represent geographical and ecological zones rather than political boundaries. The scientific evidence has been evaluated to compare impacts across (rather than within) sub-regions, although this was not always possible depending on the scientific information available.

23.1.1. Scope and Route Map of Chapter

The chapter is structured around key policy areas. Sections 23.3 to 23.6 summarize the latest scientific evidence on sensitivity climate, observed

Figure 23-1 | Sub-regional classification of the IPCC Europe region. Based on Metzger et al., 2005.

impacts and attribution, projected impacts, and adaptation options, with respect to four main categories of impacts:

- Production systems and physical infrastructure
- Agriculture, fisheries, forestry, and bioenergy production
- Health protection and social welfare
- Protection of environmental quality and biological conservation.

The benefit of assessing evidence in a regional chapter is that impacts across sectors can be described, and interactions between impacts can be identified. Further, the cross-sectoral decision making required to address climate change can be reviewed. The chapter also includes sections that were not in AR4. As adaptation and mitigation policy develops, the evidence for potential co-benefits and unintended consequences of such strategies is reviewed (Section 23.8). The final section synthesizes the key findings with respect to: observed impacts of climate change, key vulnerabilities, and research and knowledge gaps.

The chapter evaluates the scientific evidence in relation to the five subregions highlighted above. The majority of the research in the Europe region is for impacts in countries in the European Union due to targeted research funding through the European Commission and national governments, which means that countries in Eastern Europe and the Russian Federation are less well represented in this chapter. Further, regional assessments may be reported for the EU15, EU27, or EEA (32) group of countries (Table SM23-1).

23.1.2. Policy Frameworks

Since AR4, there have been significant changes in Europe in responses to climate change. More countries now have adaptation and mitigation policies in place. An important force for climate policy development in the region is the European Union (EU). EU member states have mitigation targets, as well as the overall EU target, with both sectoral and regional aspects to the commitments.

Adaptation policies and practices have been developed at international, national, and local levels although research on implementation of such policies is limited. Owing to the vast range of policies, strategies, and measures it is not possible to describe them extensively here. However, adaptation in relation to cross-sectoral decision making is discussed in Section 23.7 (see also Box 23-3 on national adaptation policies). The European Climate Adaptation Platform (Climate-ADAPT) catalogs adaptation actions reported by EU Member States (EC, 2013a). The EU Adaptation Strategy was adopted in 2013 (EC, 2013b). See Chapter 15 for a more extensive discussion of institutions and governance in relation to adaptation planning and implementation.

23.1.3. Conclusions from Previous Assessments

AR4 documented a wide range of impacts of observed climate change in Europe (WGII AR4 Chapter 12). The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) confirmed increases in warm days and warm nights and decreases in cold days and cold nights since 1950 (high confidence; SREX Section 3.3.1). Extreme precipitation increased in part of the

continent, mainly in winter over Western-Central Europe and European Russia (*medium confidence*; SREX Section 3.3.2). Dryness has increased mainly in Southern Europe (*medium confidence*; SREX Section 3.3.2). Climate change is expected to magnify regional differences within Europe for agriculture and forestry because water stress was projected to increase over Central and Southern Europe (WGII AR4 Section 12.4.1; SREX Sections 3.3.2, 3.5.1). Many climate-related hazards were projected to increase in frequency and intensity, but with significant variations within the region (WGII AR4 Section12.4).

The AR4 identified that climate changes would pose challenges to many economic sectors and was expected to alter the distribution of economic activity within Europe (*high confidence*). Adaptation measures were evolving from reactive disaster response to more proactive risk management. A prominent example was the implementation of heat health warning systems following the 2003 heat wave event (WGII AR4 Section 12.6.1; SREX Section 9.2.1). National adaptation plans were developed and specific plans were incorporated in European and national policies (WGII AR4 Sections 12.2.3, 12.5), but these were not yet evaluated (WGII AR4 Section 12.8).

23.2. Current and Future Trends

23.2.1. Non-Climate Trends

European countries are diverse in both demographic and economic trends. Population health and social welfare have improved everywhere in Europe, with reductions in adult and child mortality rates, but social inequalities both within and between countries persist (Marmot et al., 2012). Population has increased in most EU27 countries, primarily as a result of net immigration (Eurostat, 2011a), although population growth is slow (total and working age population; Rees et al., 2012). Aging of the population is a significant trend in Europe. This will have both economic and social implications, with many regions experiencing a decline in the labor force (Rees et al., 2012). Since AR4, economic growth has slowed or become negative in many countries, leading to a reduction in social protection measures and increased unemployment (Eurostat, 2011b). The longer term implications of the financial crisis in Europe are unclear, although it may lead to a modification of the economic outlook and affect future social protection policies with implications for adaptation.

Europe is one of the world's largest and most productive suppliers of food and fiber (Easterling et al., 2007). Agriculture is an important land use across the European region; for example, it covers about 35% of the total land area of western Europe (Rounsevell et al., 2006). After 1945, an unprecedented increase in agricultural productivity occurred, but also declines in agricultural land use areas. This intensification had several negative impacts on the ecological properties of agricultural systems, such as carbon sequestration, nutrient cycling, soil structure and functioning, water purification, and pollination. Pollution from agriculture has led to eutrophication and declines in water quality in some areas (Langmead et al., 2007). Most scenario studies suggest that agricultural land areas will continue to decrease in the future (see also Busch, 2006, for a discussion). Agriculture accounts for 24% of total national freshwater abstraction in Europe and more than 80% in some Southern

European countries (EEA, 2009). Economic restructuring in some Eastern European countries has led to a decrease in water abstraction for irrigation, suggesting the potential for future increases in irrigated agriculture and water use efficiency (EEA, 2009).

Forest in Europe covers approximately 34% of the land area (Eurostat, 2009). The majority of forests now grow faster than in the early 20th century as a result of advances in forest management practices, genetic improvement, and, in Central Europe, the cessation of site-degrading practices such as litter collection for fuel. Increasing temperatures and carbon dioxide (CO₂) concentrations, nitrogen deposition, and the reduction of air pollution (sulfur dioxide (SO₂)) have also had a positive effect on forest growth. Scenario studies suggest that forested areas will increase in Europe in the future on land formerly used for agriculture (Rounsevell et al., 2006). Soil degradation is already intense in parts of the Mediterranean and Central-Eastern Europe and, together with prolonged drought periods and fires, is already contributing to an increased risk of desertification. Projected risks for future desertification are the highest in these areas (EEA, 2012).

Urban development is projected to increase all over Europe (Reginster and Rounsevell, 2006), but especially rapidly in Eastern Europe, with the magnitude of these increases depending on population growth, economic growth, and land use planning policy. Although changes in urban land use will be relatively small in area terms, urban development has major impacts locally on environmental quality. Outdoor air quality has, however, been improving (Langmead et al., 2007). Peri-urbanization is an increasing trend in which residents move out of cities to locations with a rural character, but retain a functional link to cities by commuting to work (Reginster and Rounsevell, 2006; Rounsevell and Reay, 2009). Several European scenario studies have been undertaken to describe European future trends with respect to socioeconomic development (de Mooij and Tang, 2003), land use change (Verburg et al., 2010; Haines-Young et al., 2012; Letourneau et al., 2012), land use and biodiversity (Spangenberg et al., 2011), crop production (Hermans et al., 2010), demographic change (Davoudi et al., 2010), economic development (Dammers, 2010), and European policy (Lennert and Robert, 2010; Helming et al., 2011). Many of these scenarios also account for the effects of future climate change (see Rounsevell and Metzger, 2010, for a review). Long-term projections (to the end of the century) are described under the new Shared Socioeconomic Pathway scenarios (SSPs) (Kriegler et al., 2010). Detailed country and regional scale socioeconomic scenarios have also been produced for the Netherlands (WLO, 2006), the UK (UK National Ecosystem Assessment, 2011), and Scotland (Harrison et al., 2013). The probabilistic representation of socioeconomic futures has also been developed for agricultural land use change (Hardacre et al., 2013). There is little evidence to suggest, however, that probabilistic futures or scenarios more generally are being used in policy making (Bryson et al., 2010).

23.2.2. Observed and Projected Climate Change

23.2.2.1. Observed Climate Change

The average temperature in Europe has continued to increase, with regionally and seasonally different rates of warming being greatest

in high latitudes in Northern Europe (Chapter 28). Since the 1980s, warming has been strongest over Scandinavia, especially in winter, whereas the Iberian Peninsula warmed mostly in summer (EEA, 2012). The decadal average temperature over land area for 2002–2011 is 1.3° $\pm\,0.11^{\circ}\text{C}$ above the 1850–1899 average, based on Hadley Centre/Climatic Research Unit gridded surface temperature data set 3 (HadCRUT3; Brohan et al., 2006), Merged Land-Ocean Surface Temperature (MLOST; Smith et al., 2008), and Goddard Institute of Space Studies (GISS) Temp (Hansen et al., 2010). See WGI AR5 Section 2.4 for a discussion of data and uncertainties and Chapter 21 for observed regional climate change.

Since 1950, high-temperature extremes (hot days, tropical nights, and heat waves) have become more frequent, while low-temperature extremes (cold spells, frost days) have become less frequent (WGI AR5 Section 2.6; SREX Chapter 3; EEA, 2012). The recent cold winters in Northern and Atlantic Europe reflect the high natural variability in the region (Peterson et al., 2012; see also WGI AR5 Section 2.7), and do not contradict the general warming trend. In Eastern Europe, including the European part of Russia, summer 2010 was exceptionally hot, with an amplitude and spatial extent that exceeded the previous 2003 heat wave (Barriopedro et al., 2011). Table 23-1 describes the impacts of major extreme events in Europe in the last decade.

Since 1950, annual precipitation has increased in Northern Europe (up to +70 mm per decade), and decreased in parts of Southern Europe (EEA, 2012, based on Haylock et al., 2008). Winter snow cover extent has a high interannual variability and a nonsignificant negative trend over the period 1967–2007 (Henderson and Leathers, 2010). Regional observed changes in temperature and precipitation extremes are also described in Table 3-2 of SREX and in Berg et al. (2013). Mean wind speeds have declined over Europe over recent decades (Vautard et al., 2010) with *low confidence* because of problematic anemometer data and climate variability (SREX Section 3.3). Bett et al. (2013) did not find any trend in windspeed using the Twentieth Century Reanalysis.

Europe is marked by increasing mean sea level with regional variations, except in the northern Baltic Sea, where the relative sea level decreased due to vertical crustal motion (Haigh et al., 2010; Menendez and Wood-Worth, 2010; Albrecht et al., 2011; EEA, 2012). Extreme sea levels have increased due to mean sea level rise (*medium confidence*; SREX Section 3.5; Haigh et al., 2010; Menendez and WoodWorth, 2010). Variability in waves is related to internal climate variability rather than climate trends (SREX Section 3.5; Charles et al., 2012).

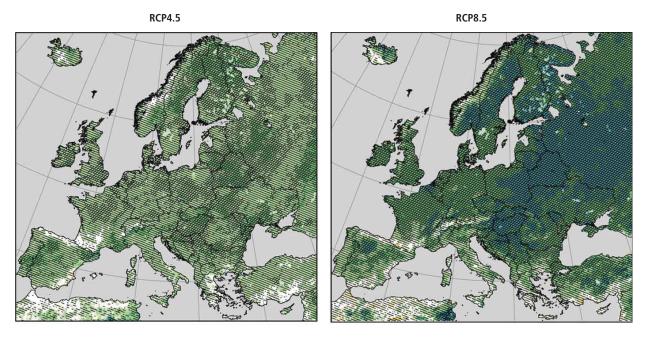
23.2.2. Projected Climate Changes

Sub-regional information from global (see Chapter 21 supplementary material; see also WGI AR5 Section 14.8.6, Annex I) and regional high-resolution climate model output (Chapters 21, 23; see also WGI AR5 Section 14.8.6) provide more knowledge about the range of possible future climates under the *Special Report on Emissions Scenarios* (SRES) and Representative Concentration Pathway (RCP) emission scenarios. Within the recognized limitations of climate projections (Chapter 21; WGI AR5 Chapter 9), new research on inter-model comparisons has provided a more robust range of future climates to assess future impacts. Since AR4, climate impact assessments are more likely to use a range

for the projected changes in temperature and rainfall. Access to comprehensive and detailed sets of climate projections for decision making exist in Europe (SREX Section 3.2.1; Mitchell et al., 2004; Fronzek et al., 2012; Jacob et al., 2013).

Climate models show significant agreement for all emission scenarios in warming (magnitude and rate) all over Europe, with strongest warming projected in Southern Europe in summer, and in Northern Europe in winter (Goodess et al., 2009; Kjellström et al., 2011). Even under an average global temperature increase limited to 2°C compared to preindustrial times, the climate of Europe is simulated to depart significantly in the next decades from today's climate (Van der Linden and Mitchell, 2009; Jacob and Podzun, 2010).

Precipitation signals vary regionally and seasonally. Trends are less clear in Continental Europe, with agreement in increase in Northern Europe and decrease in Southern Europe (*medium confidence*; Kjellström et al., 2011). Precipitation is projected to decrease in the summer months up to southern Sweden and increase in winter (Schmidli et al., 2007), with more rain than snow in mountainous regions (Steger et al., 2013). In Northern Europe, a decrease of long-term mean snowpack (although snow-rich winters will remain) toward the end of the 21st century (Räisänen and Eklund, 2012) is projected. There is lack of information about past and future changes in hail occurrence in Europe. Changes in future circulation patterns (Ulbrich et al., 2009; Kreienkamp et al., 2010) and mean wind speed trends are uncertain in sign (Kjellström et al., 2011; McInnes et al., 2011).


Regional coupled simulations over the Mediterranean region provide a more realistic characterization of impact parameters (e.g., snow cover, aridity index, river discharge), which were not revealed by Coupled Model Intercomparison Project Phase 3 (CMIP3) global simulations (Dell'Aquila et al., 2012).

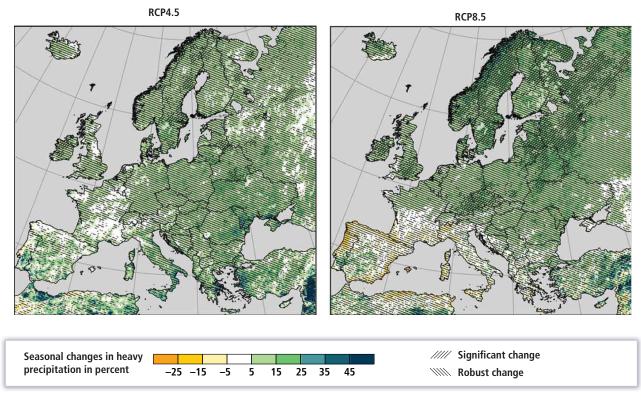
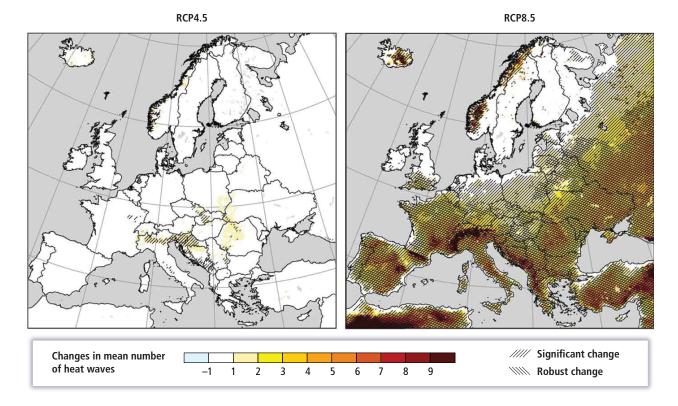
For 2081–2100 compared to 1986–2005, projected global mean sea level rises (meters) are in the range 0.29 to 0.55 for RCP2.6, 0.36 to 0.63 for RCP4.5, 0.37 to 0.64 for RCP6.0, and 0.48 to 0.82 for RCP8.5 (medium confidence; WGIII AR5 Chapter 5). There is a low confidence on projected regional changes (Slangen et al., 2012; WGI AR5 Section 13.6). Low-probability/high-impact estimates of extreme mean sea level rise projections derived from the SRES A1FI scenario for the Netherlands (Katsman et al., 2011) indicate that the mean sea level could rise globally between 0.55 and 1.15 m, and locally (Netherlands) by 0.40 to 1.05 m, by 2100. Extreme (very unlikely) scenarios for the UK vary from 0.9 to 1.9 m by 2100 (Lowe et al., 2009).

23.2.2.3. Projected Changes in Climate Extremes

There will be a marked increase in extremes in Europe, in particular, in heat waves, droughts, and heavy precipitation events (Beniston et al., 2007; Lenderink and Van Meijgaard, 2008; see also Chapter 21 supplementary material). There is a general *high confidence* concerning changes in temperature extremes (toward increased number of warm days, warm nights, and heat waves; SREX Table 3-3). Figure 23-2c shows projected changes in the mean number of heat waves in May to September for 2071–2100 compared to 1971–2000 for RCP4.5 and

(a) DJF seasonal changes in heavy precipitation (%), 2071–2100 compared to 1971–2000

(b) JJA seasonal changes in heavy precipitation (%), 2071-2100 compared to 1971-2000

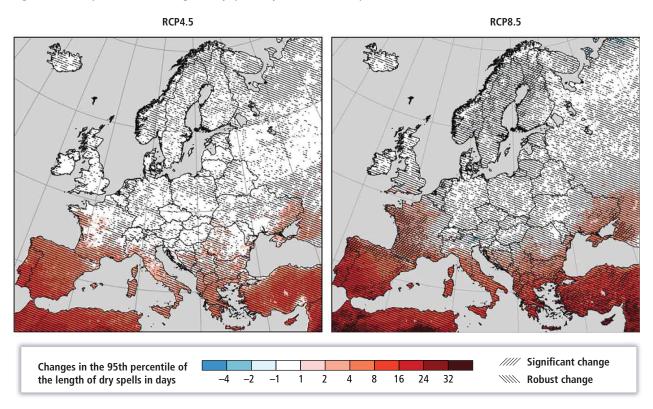

Figure 23-2 | (a) and (b): Projected seasonal changes in heavy precipitation defined as the 95th percentile of daily precipitation (only days with precipitation >1 mm day⁻¹ are considered) for the period 2071–2100 compared to 1971–2000 (in %) in the months December to February (DJF) and June to August (JJA). (c) Projected changes in the mean number of heat waves occurring in the months May to September for the period 2071–2100 compared to 1971–2000 (number per 30 years). Heat waves are defined as periods of more than 5 consecutive days with daily maximum temperature exceeding the mean maximum temperature of the May to September season of the control period (1971–2000) by at least 5°C. (d) Projected changes in the 95th percentile of the length of dry spells for the period 2071–2100 compared to 1971–2000 (in days). Dry spells are defined as periods of at least 5 consecutive days with daily precipitation below 1 mm. Hatched areas indicate regions with robust (at least 66% of models agree in the sign of change) and/or statistically significant change (significant on a 95% confidence level using Mann–Whitney U test). For the eastern parts of Black Sea, eastern Anatolia, and southeast Anatolia (Turkey), no regional climate model projections are available. Changes represent the mean over 8 (RCP4.5, left side) and 9 (RCP8.5, right side) regional model simulations compiled within the Coordinated Downscaling Experiment – European Domain (EURO-CORDEX) initiative. Adapted from Jacob et al., 2013.

Figure 23-2 (continued)

(c) Changes in mean number of heat waves for MJJAS, 2071–2100 compared to 1971–2000

(d) Changes in the 95th percentile of the length of dry spells (days) 2071–2100 compared to 1971–2000

RCP8.5 with large differences depending on the emission scenario. The increase in likelihood of some individual events due to anthropogenic change has been quantified for the 2003 heat wave (Schär and Jendritzky, 2004), the warm winter of 2006/2007, and warm spring of 2007 (Beniston, 2007).

Changes in extreme precipitation depend on the region, with a *high confidence* of increased extreme precipitation in Northern Europe (all seasons) and Continental Europe (except summer). Future projections are regionally and seasonally different in Southern Europe (SREX Table 3-3). Figure 23-2a,b shows projected seasonal changes of heavy precipitation events for 2071–2100 compared to 1971–2000 for RCP4.5 and RCP8.5.

Projected changes of spatially averaged indices over the European subregions are described in the supplemental information (Tables SM23-2 and SM23-3 for sub-regions, and Table SM23-4 for three Alpine areas).

In winter, small increases in extreme wind speed are projected for Central and Northern Europe (*medium confidence*; Section 21.3.3.1.6; SREX Figure 3-8; Beniston et al., 2007; Rockel and Woth, 2007; Haugen and Iversen, 2008; Rauthe et al., 2010; Schwierz et al., 2010), connected to changes in storm tracks (*medium confidence*; Pinto et al., 2007a,b, 2010; Donat et al., 2010). Other parts of Europe and seasons are less clear in sign with a small decreasing trend in Southern Europe (*low confidence*; Donat et al., 2011; McInnes et al., 2011).

Extreme sea level events will increase (*high confidence*; WGI AR5 Section 13.7; SREX Section 3.5.3), mainly dominated by the global mean sea level increase. Storm surges are expected to vary along the European coasts. Significant increases are projected in the eastern North Sea (increase of 6 to 8% of the 99th percentile of the storm surge residual, 2071–2100 compared to 1961–1990, based on the B2, A1B, and A2 SRES scenarios; Debernard and Rÿed, 2008) and west of UK and Ireland (Debernard and Rÿed, 2008; Wang et al., 2008), except south of Ireland (Wang et al., 2008). There is a *medium agreement* for the south of North Sea and Dutch coast where trends vary from increasing (Debernard and Rÿed, 2008) to stable (Sterl et al., 2009). There is a *low agreement* on the trends in storm surge in the Adriatic Sea (Planton et al., 2006; Jordà et al., 2012; Lionello et al., 2012; Troccoli et al., 2012b).

23.2.3. Observed and Projected Trends in Riverflow and Drought

Streamflows have decreased in the south and east of Europe and increased in Northern Europe (Stahl et al., 2010; Wilson et al., 2010; see also Section 3.2.3). In general, few changes in flood trends can be attributed to climate change, partly owing to the lack of sufficiently long records (Kundzewicz et al., 2013). European mean and peak discharges are highly variable (Bouwer et al., 2008); for instance, in France, upward trends in low flows were observed over 1948–1988 and downward trends over 1968–2008 (Giuntoli et al., 2013). Alpine glacier retreat during the last 2 decades caused a 13% increase in glacier contribution to August runoff of the four main rivers originating in the Alps, compared to the long-term average (Huss, 2011). Increases in extreme river discharge (peak flows) over the past 30 to 50 years have been observed

in parts of Germany (Petrow et al., 2007, 2009), the Meuse River basin (Tu et al., 2005), parts of Central Europe (Villarini et al., 2011), Russia (Semenov, 2011), and northeastern France (Renard et al., 2008). Decreases in extreme river discharge have been observed in the Czech Republic (Yiou et al., 2006), and no change observed in Switzerland (Schmocker-Fackel and Naef, 2010), Germany (Bormann et al., 2011), and the Nordic countries (Wilson et al., 2010). River regulation possibly partly masks increasing peak flows in the Rhine (Vorogushyn et al., 2012). One study (Pall et al., 2011) suggested that the UK 2000 flood was partly due to anthropogenic forcing, although another showed a weaker effect (Kay et al., 2011).

Climate change is projected to affect the hydrology of river basins (Chapter 4; SREX Chapter 3). The occurrence of current 100-year return period discharges is projected to increase in Continental Europe, but decrease in some parts of Northern and Southern Europe by 2100 (Dankers and Feyen, 2008; Rojas et al., 2012). In contrast, studies for individual catchments indicate increases in extreme discharges, to varying degrees, in Finland (Veijalainen et al., 2010), Denmark (Thodsen, 2007), Ireland (Wang et al., 2006; Steele-Dunne et al., 2008; Bastola et al., 2011), the Rhine basin (Görgen et al., 2010; te Linde et al., 2010a), Meuse basin (Leander et al., 2008; Ward et al., 2011), the Danube basin (Dankers et al., 2007), and France (Quintana-Segui et al., 2011; Chauveau et al., 2013). Although snowmelt floods may decrease, increased autumn and winter rainfall could lead to higher peak discharges in Northern Europe (Lawrence and Hisdal, 2011). Declines in low flows are projected for the UK (Christierson et al., 2012), Turkey (Fujihara et al., 2008), France (Chauveau et al., 2013), and rivers fed by Alpine glaciers (Huss, 2011).

The analysis of trends in droughts is made complex by the different categories or definitions of drought (meteorological, agricultural, and hydrological) and the lack of long-term observational data (SREX Box 3-3). Southern Europe shows trends toward more intense and longer meteorological droughts, but they are still inconsistent (Sousa et al., 2011). Drought trends in all other sub-regions are not statistically significant (SREX Section 3.5.1). Regional and global climate simulations project (medium confidence) an increase in duration and intensity of droughts in Central and Southern Europe and the Mediterranean up until the UK for different definitions of drought (Gao and Giorgi, 2008; Feyen and Dankers, 2009; Vidal and Wade, 2009; Koutroulis et al., 2010; Tsanis et al., 2011; Chapter 21). Even in regions where summer precipitation is expected to increase, soil moisture and hydrological droughts may become more severe as a result of increasing evapotranspiration (Wong et al., 2011). Projected changes in the length of meteorological dry spells show that the increase is large in Southern Europe (Figure 23-2d).

23.3. Implications of Climate Change for Production Systems and Physical Infrastructure

23.3.1. Settlements

23.3.1.1. Coastal Flooding

As the risk of extreme sea level events increases with climate change (Section 23.2.3; Chapter 5), coastal flood risk will remain a key challenge

for several European cities, port facilities, and other infrastructure (Hallegatte et al., 2008, 2011; Nicholls et al., 2008). With no adaptation, coastal flooding in the 2080s is projected to affect an additional 775,000 and 5.5 million people per year in the EU27 (B2 and A2 scenarios, respectively; Ciscar et al., 2011). The Atlantic, Northern, and Southern European regions are projected to be most affected. Direct costs from sea level rise in the EU27 without adaptation could reach €17 billion per year by 2100 (Hinkel et al., 2010), with indirect costs also estimated for land-locked countries (Bosello et al., 2012). Countries with high absolute damage costs include Netherlands, Germany, France, Belgium, Denmark, Spain, and Italy (Hinkel et al., 2010). Upgrading coastal defenses would substantially reduce impacts and damage costs (Hinkel et al., 2010). However, the amount of assets and populations that need to be protected by coastal defenses is increasing; thus, the magnitude of losses when floods do occur will also increase in the future (Hallegatte et al., 2013).

An increase in future flood losses due to climate change have been estimated for Copenhagen (Hallegatte et al., 2011), UK coast (Mokrech et al., 2008; Purvis et al., 2008; Dawson et al., 2011), the North Sea coast (Gaslikova et al., 2011), cities including Amsterdam and Rotterdam (Hanson et al., 2011), and the Netherlands (Aerts et al., 2008). A 1 m sea level rise in Turkey could affect 3 million additional people and put US\$12 billion capital value at risk, with around US\$20 billion adaptation costs (10% of GNP; Karaca and Nicholls, 2008). In Poland, up to 240,000

people would be affected by increasing flood risk on the Baltic coast (Pruszak and Zawadzka, 2008). The increasing cost of insurance and unwillingness of investors to place assets in affected areas is a potential growth impediment to coastal and island economies (Day et al., 2008).

23.3.1.2. River and Pluvial Flooding

Recent major flood events in Europe include the 2007 floods in the UK (Table 23-1; Chatterton et al., 2010) and the 2013 floods in Germany. The observed increase in river flood events and damages in Europe is well documented (see Section 18.4.2.1); however, the main cause is increased exposure of persons and property in flood risk areas (Barredo, 2009). Since AR4, new studies provide a wider range of estimates of future economic losses from river flooding attributable to climate change, depending on the modeling approach and climate scenario (Bubeck et al., 2011). Studies now also quantify risk under changes in population and economic growth, generally indicating this contribution to be about equal or larger than climate change per se (Feyen et al., 2009; Maaskant et al., 2009; Bouwer et al., 2010; Rojas et al., 2013; te Linde et al., 2011). Some regions may see increasing risks, but others may see decreases or little to no change (ABI, 2009; Feyen et al., 2009, 2012; Lugeri et al., 2010; Mechler et al., 2010; Bubeck et al., 2011; Lung et al., 2012). In the EU15, river flooding could affect 250,000 to 400,000

Table 23-1 | Impacts of climate extremes in the last decade in Europe.^a

Year	Region	Meteorological characteristics	Production systems and physical infrastructure, settlements	Agriculture, fisheries, forestry, bioenergy	Health and social welfare	Environmental quality and biological conservation	Mega- fire
2003	Western and central Europe	Hottest summer in at least 500 years (Luterbacher et al., 2004)	Damage to road and rail transport systems Reduced/interrupted operation of nuclear power plants (mostly in France) High transport prices on the Rhine due to low water levels	Grain harvest losses of 20% (Ciais et al., 2005)	35,000 deaths in August in central and western Europe (Robine et al., 2008)	Decline in water quality (Daufresne et al., 2007) High outdoor pollution levels (EEA, 2012)	Yes
2004/ 2005	Iberian Peninsula	Hydrological drought		Grain harvest losses of 40% (EEA, 2010c)			
2007	Southern Europe	Hottest summer on record in Greece since 1891 (Founda and Giannakopoulos, 2009)	1710 buildings burned down or rendered uninhabitable in Greece (JRC, 2008)	~575,500 hectares burnt area (JRC, 2008)	6 deaths in Portugal, 80 deaths in Greece (JRC, 2008)	Several protected conservation sites (Natura, 2000) were destroyed (JRC, 2008).	Yes, Greece
2007	England and Wales	May–July wettest since records began in 1766	Estimated total losses £4 billion (£3 billion insured losses) (Chatterton et al., 2010) Failure of pumping station led to 20,000 people without water for 2 weeks.	78 farms flooded. Impacts on agriculture £50 million (Chatterton et al., 2010)	13 deaths and 48,000 flooded homes (Pitt, 2008). Damage costs for health effects, including loss of access to education, £287 million (Chatterton et al., 2010)		
2010	Western Russia	Hottest summer since 1500 (Barriopedro et al., 2011)		Fire damage to forests (Shvidenko et al., 2011) Reduction in crop yields (Barriopedro et al., 2011; Coumou and Rahmstorf, 2012)	Estimated 10,000 excess deaths due to heat wave in Moscow in July and August (Revich and Shaposhnikov, 2012)	High outdoor pollution levels in Moscow (Bondur, 2011; Revich and Shaposhnikov, 2012)	Yes
2011	France	Hottest and driest spring in France since 1880	Reduction in snow cover for skiing	8% decline in wheat yield (AGRESTE, 2011)			

^aExtreme events derived from Coumou and Rahmstorf (2012).

additional people by the 2080s (SRES A2 and B2 scenarios, respectively) more than doubling annual average damages, with Central and Northern Europe and the UK most affected (Ciscar, 2009; Ciscar et al., 2011). When economic growth is included, economic flood losses in Europe could increase 17-fold under the A1B climate scenario (Rojas et al., 2013).

Few studies have estimated future damages from inundation in response to an increase in intense rainfall (Hoes, 2006; Willems et al., 2012). Processes that influence flash flood risk include increasing exposure from urban expansion, and forest fires that lead to erosion and increased surface runoff (Lasda et al., 2010). Some studies have costed adaptation measures but these may only partly offset anticipated impacts (Zhou et al., 2012).

23.3.1.3. Windstorms

Several studies project an overall increase in storm hazard in northwest Europe (Section 23.2.2.3) and in economic and insured losses (Section 17.7), but natural variations in frequencies are large. There is no evidence that the observed increase in European storm losses is due to anthropogenic climate change (Barredo, 2010). There is a lack of information for other storm types, such as tornadoes and thunderstorms.

23.3.1.4. Mass Movements and Avalanches

In the European Alps, the frequency of rock avalanches and large rock slides has apparently increased over the period 1900-2007 (Fischer et al., 2012). The frequency of landslides may also have increased in some locations (Lopez Saez et al., 2013). Mass movements are projected to become more frequent with climate change (Huggel et al., 2010; Stoffel and Huggel, 2012), although several studies indicate a more complex or stabilizing response of mass movements to climate change (Dixon and Brook, 2007; Jomelli et al., 2007, 2009; Huggel et al., 2012; Melchiorre and Frattini, 2012). Some land use practices have led to conditions favorable to increased landslide risk, despite climate trends that would result in a decrease of landslide frequency, as reported in Calabria (Polemio and Petrucci, 2010) and in the Apennines (Wasowski et al., 2010). Snow avalanche frequency changes in Europe are dominated by climate variability; studies based on avalanche observations (Eckert et al., 2010) or favorable meteorological conditions (Castebrunet et al., 2012; Teich et al., 2012) show contrasting variations, depending on the region, elevation, season, and orientation.

23.3.2. Built Environment

Built infrastructure in Europe is vulnerable to extreme weather events, including overheating of buildings (houses, hospitals, schools) during hot weather (Crump et al., 2009; DCLG, 2012). Buildings that were originally designed for certain thermal conditions will need to function in warmer climates in the future (WHO, 2008). Climate change in Europe is expected to increase cooling energy demand (Dolinar et al., 2010; see also Section 23.3.4), with implications for mitigation and adaptation policies (Section 23.8.1). A range of adaptive strategies for buildings are available, including effective thermal mass and solar shading

(Three Regions Climate Change Group, 2008). Climate change may also increase the frequency and intensity of drought-induced soil subsidence and associated damage to dwellings (Corti et al., 2009).

With respect to the outdoor built environment, there is limited evidence regarding the potential for differential rates of radiatively forced climate change in urban compared to rural areas (McCarthy et al., 2010). Climate change may exacerbate London's nocturnal urban heat island (UHI) (Wilby, 2008); however, the response of different cities may vary. For example, a study of Paris (Lemonsu et al., 2013) indicated a future reduction in strong urban heat island events when increased soil dryness was taken into effect. Modification of the built environment, via enhanced urban greening, for example, can reduce temperatures in urban areas, with co-benefits for health and well-being (Sections 23.7.4, 23.8.1).

23.3.3. Transport

Systematic and detailed knowledge on climate change impacts on transport in Europe remains limited (Koetse and Rietveld, 2009).

On road transport, in line with AR4, more frequent but less severe collisions due to reduced speed are expected in case of increased precipitation (Kilpeläinen and Summala, 2007; Brijs et al., 2008). However, lower traffic speed may cause welfare losses due to additional time spent driving (Sabir et al., 2010). Severe snow and ice-related accidents will also decrease, but the effect of fewer frost days on total accidents is unclear (Andersson and Chapman, 2011a,b). Severe accidents caused by extreme weather are projected to decrease by 63 to 70% in 2040–2070 compared to 2007 as a result of modified climate and expected developments in vehicle technology and emergency systems (Nokkala et al., 2012).

For rail, consistent with AR4, increased buckling in summer, as occurred in 2003 in the UK, is expected to increase the average annual cost of heat-related delays in some regions, while the opposite is expected for ice and snow-related delays (Lindgren et al., 2009; Dobney et al., 2010; Palin et al., 2013). Effects from extreme precipitation, as well as the net overall regional impact of climate change remain unclear. Efficient adaptation comprises proper maintenance of track and track bed.

Regarding inland waterways, the case of Rhine shows that, for 1°C to 2°C increases by 2050, more frequent high water levels are expected in winter, while after 2050 days with low water levels in summer will also increase (te Linde, 2007; Hurkmans et al., 2010; Jonkeren et al., 2011; te Linde et al., 2011). Low water levels will reduce the load factor of inland ships and consequently increase transport prices, as in the Rhine and Moselle in 2003 (Jonkeren et al., 2007; Jonkeren, 2009). Adaptation includes modal shifts, increased navigational hours per day under low water levels, and infrastructure modifications (e.g., canalization of river parts) (Jonkeren et al., 2011; Krekt et al., 2011).

For long range ocean routes, the economic attractiveness of the Northwest Passage and the Northern Sea Route depends also on passage fees, bunker prices, and cost of alternative sea routes (Verny and Grigentin, 2009; Liu and Kronbak, 2010; Lasserre and Pelletier, 2011).

Regarding air transport, for Heathrow airport (UK), future temperature and wind changes were estimated to cause a small net annual increase but much larger seasonal changes on the occurrence of delays (Pejovic et al., 2009).

23.3.4. Energy Production, Transmission, and Use

On wind energy, no significant changes are expected before 2050, at least in Northern Europe (Pryor and Barthelmie, 2010; Pryor and Schoof, 2010; Seljom et al., 2011; Barstad et al., 2012; Hueging et al., 2013). After 2050, in line with AR4, the wind energy potential in Northern, Continental, and most of Atlantic Europe may increase during winter and decrease in summer (Rockel and Woth, 2007; Harrison et al., 2008; Nolan et al., 2012; Hueging et al., 2013). For Southern Europe, a decrease in both seasons is expected, except for the Aegean Sea and Adriatic coast, where a significant increase during summer is possible (Bloom et al., 2008; Najac et al., 2011; Pašičko et al., 2012; Hueging et al., 2013).

For hydropower, electricity production in Scandinavia is expected to increase by 5 to 14% during 2071–2100 compared to historic or present levels (Haddeland et al., 2011; Golombek et al., 2012); for 2021–2050, increases by 1 to 20% were estimated (Haddeland et al., 2011; Seljom et al., 2011; Hamududu and Killingtveit, 2012). In Continental and part of Alpine Europe, reductions in electricity production by 6 to 36% were estimated (Schaefli et al., 2007; Stanzel and Nachtnebel, 2010; Paiva et al., 2011; Pašičko et al., 2012; Hendrickx and Sauquet, 2013). For Southern Europe, production is expected to decrease by 5 to 15% in 2050 compared to 2005 (Hamududu and Killingtveit, 2012; Bangash et al., 2013). Adaptation consists of improved water management, including pump storage if appropriate (Schaefli et al., 2007; García-Ruiz et al., 2011).

Biofuel production is discussed in Section 23.4.5. There are few studies of impacts on solar energy production. Crook et al. (2011) estimated an increase of the energy output from photovoltaic panels and especially from concentrated solar power plants in most of Europe under the A1B scenario.

On thermal power, in line with AR4, van Vliet et al. (2012) estimated a 6 to 19% decrease of the summer average usable capacity of power plants by 2031–2060 compared to 1971–2000, while smaller decreases have been also estimated (Förster and Lilliestam, 2010; Linnerud et al., 2011). Closed-cooling circuits are efficient adaptation choices for new plants (Koch and Vögele, 2009). In power transmission, increasing lightning and decreasing snow-sleet and blizzard faults for 2050–2080 were estimated for the UK (McColl et al., 2012).

By considering both heating and cooling, under a +3.7°C scenario by 2100 a decrease of total annual energy demand in Europe as a whole during 2000-2100 was estimated (Isaac and van Vuuren, 2009). Seasonal changes will be prominent, especially for electricity (see Figure 23-3), with summer peaks arising also in countries with moderate summer temperatures (Hekkenberg et al., 2009). Heating degree days are expected to decrease by 11 to 20% between 2000 and 2050 due solely to climate change (Isaac and van Vuuren, 2009). For cooling, very large percentage increases up to 2050 are estimated by the same authors for most of Europe as the current penetration of cooling devices is low; then, increases by 74 to 118% in 2100 (depending on the region) from 2050 are expected under the combined effect of climatic and non-climatic drivers. In Southern Europe, cooling degree days by 2060 will increase, while heating degree days will decrease but with substantial spatial variations (Giannakopoulos et al., 2009). Consequently, net annual electricity generation cost will increase in most of the Mediterranean and decrease in the rest of Europe (Mirasgedis

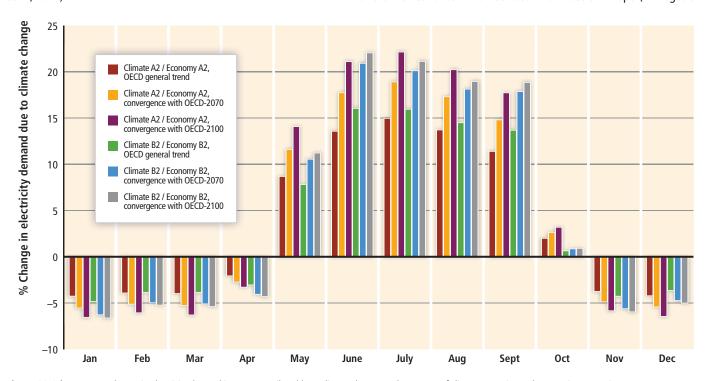


Figure 23-3 | Percentage change in electricity demand in Greece attributable to climate change, under a range of climate scenarios and economic assumptions. Source: Mirasgedis et al., 2007.

et al., 2007; Eskeland and Mideksa, 2010; Pilli-Sihlova et al., 2010; Zachariadis, 2010).

Future building stock changes and retrofit rates are critical for impact assessment and adaptation (Olonscheck et al., 2011). Energy-efficient buildings and cooling systems, and demand-side management, are effective adaptation options (Artmann et al., 2008; Jenkins et al., 2008; Day et al., 2009; Breesch and Janssens, 2010; Chow and Levermore, 2010).

23.3.5. Industry and Manufacturing

Research on the potential effects of climate change in industry is limited. Modifications in future consumption of food and beverage products have been estimated on the basis of current sensitivity to seasonal temperature (Mirasgedis et al., 2013). Higher temperatures may favor the growth of food-borne pathogens or contaminants (Jacxsens et al., 2010; Popov Janevska et al., 2010; see also Section 23.5.1). The quality of some products, such as wine (Section 23.4.1; Box 23-2), is also likely to be affected. In other sectors, the cumulative cost of direct climate change impacts in the Greek mining sector for 2021–2050 has been estimated at €0.245 billion, in 2010 prices (Damigos, 2012). Adaptation to buildings or work practices are likely to be needed to maintain labor productivity during hot weather (Kjellstrom et al., 2009; see also Section 11.6.2.2).

23.3.6. Tourism

In line with AR4, the climate for general tourist activities especially after 2070 is expected to improve significantly during summer and less during autumn and spring in northern Continental Europe, Finland, southern Scandinavia, and southern England (Amelung et al., 2007; Nicholls and Amelung, 2008; Amelung and Moreno, 2012). For the Mediterranean, climatic conditions for light outdoor tourist activities are expected to deteriorate in summer mainly after 2050, but improve during spring and autumn (Amelung et al., 2007; Amelung and Moreno, 2009; Hein et al., 2009; Perch-Nielsen et al., 2010; Giannakopoulos et al., 2011). Others concluded that before 2030 (or even 2060) this region as a whole will not become too hot for beach or urban tourism (Moreno and Amelung, 2009; Rutty and Scott, 2010), while surveys showed that beach tourists are deterred mostly by rain (De Freitas et al., 2008; Moreno, 2010).

Thus, from 2050, domestic tourism and tourist arrivals at locations in Northern and parts of Continental Europe may be enhanced at the expense of southern locations (Hamilton and Tol, 2007; Hein et al., 2009; Amelung and Moreno, 2012; Bujosa and Roselló, 2012). The age of tourists, the climate in their home country, and local economic and environmental conditions (e.g., water stress, tourist development) are also critical (Hamilton and Tol, 2007; Lyons et al., 2009; Moreno and Amelung, 2009; Rico-Amoros et al., 2009; Eugenio-Martin and Campos-Soria, 2010; Perch-Nielsen et al., 2010).

Tourism in mountainous areas may benefit from improved climatic conditions in summer (Endler et al., 2010; Perch-Nielsen et al., 2010; Endler and Matzarakis, 2011; Serquet and Rebetez, 2011). However, in

agreement with AR4, natural snow reliability and thus ski season length will be adversely affected, especially where artificial snowmaking is limited (Moen and Fredman, 2007; OECD, 2007; Steiger, 2011). Lowlying areas will be the most vulnerable (Uhlmann et al., 2009; Endler et al., 2010; Endler and Matzarakis, 2011; Serquet and Rebetez, 2011; Steiger, 2011). Tourist response to marginal snow conditions remains largely unknown, while changes in weather extremes may also be critical (Tervo, 2008). Up to 2050, demographic changes (e.g., population declines in source countries, aging populations) may have a higher impact than climate change (Steiger, 2012). Artificial snowmaking has physical and economic limitations, especially in small sized and lowaltitude ski stations (Steiger and Mayer, 2008; Sauter et al., 2010; Steiger, 2010, 2011), and increases water and energy consumption. Shifts to higher altitudes, operational/ technical measures, and year-round tourist activities may not fully compensate for adverse impacts.

23.3.7. Insurance and Banking

Insurance and banking face problems related to accurate pricing of risks, shortage of capital after large loss events, and by an increasing burden of losses that can affect markets and insurability, within but also outside the European region (CEA, 2007; Botzen et al., 2010a,b; see also Section 10.7). However, risk transfer, including insurance, also holds potential for adaptation by providing incentives to reduce losses (Botzen and van den Bergh, 2008; CEA, 2009; Herweijer et al., 2009).

Banking is potentially affected through physical impacts on assets and investments, as well as through regulation and/or mitigation actions by changing demands regarding sustainability of investments and lending portfolios. Few banks have adopted climate strategies that also address adaptation (Cogan, 2008; Furrer et al., 2009).

Windstorm losses are well covered in Europe by building and motor policies, and thus create a large exposure to the insurance sector. Flood losses in the UK in 2000, 2007, and 2009 have put the insurance market under further pressure, with increasing need for the government to reduce risk (Ward et al., 2008; Lamond et al., 2009). Other risks of concern to the European insurance industry is building subsidence related to drought (Corti et al., 2009), and hail damage to buildings and agriculture (Kunz et al., 2009; Botzen et al., 2010b; GDV, 2011).

The financial sector can adapt by adjusting premiums, restricting or reducing coverage, spreading risk further, and importantly incentivizing risk reduction (Crichton, 2006, 2007; Clemo, 2008; Botzen et al., 2010a; Surminski and Philp, 2010; Wamsler and Lawson, 2011). Public attitudes in Scotland and the Netherlands would support insurance of private property and public infrastructure damages in the case of increasing flood risk (Botzen et al., 2009; Glenk and Fisher, 2010). Government intervention is, however, often needed to provide compensation and back-stopping in the event of major losses (Aakre and Rübbelke, 2010; Aakre et al., 2010). Hochrainer et al. (2010) analyzed the performance of the European Union Solidarity Fund that supports European governments in large events, and argue there is a need to increase its focus on risk reduction. Current insurance approaches present in Europe are likely to remain, as they are tailored to local situations and preferences (Schwarze et al., 2011).

23.4. Implications of Climate Change for Agriculture, Fisheries, Forestry, and Bioenergy Production

23.4.1. Plant (Food) Production

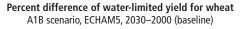
In AR4, Alcamo et al. (2007) reported that crop suitability is likely to change throughout Europe. During the 2003 and 2010 summer heat waves, grain-harvest losses reached 20 and 25-30% in affected regions of Europe and Russia, respectively (Ciais et al., 2005; Barriopedro et al., 2011; see also Table 23-1). Cereals production fell on average by 40% in the Iberian Peninsula during the intense 2004/2005 drought (EEA, 2010a). Climate-induced variability in wheat production has increased in recent decades in Southern and Central Europe (Ladanyi, 2008; Brisson et al., 2010; Hawkins et al., 2013), but no consistent reduction has been recorded in the northernmost areas of Europe (Peltonen-Sainio et al., 2010). Country-scale rainfed cereals yields are below agro-climatic potentials (Supit et al., 2010), and wheat yield increases have leveled off in several countries over 1961-2009 (Olesen et al., 2011). High temperatures and droughts during grain filling have contributed to the lack of yield increase of winter wheat in France despite improvements in crop breeding (Brisson et al., 2010; Kristensen et al., 2011). In contrast, in eastern Scotland, warming has favored an increase in potato yields since 1960 (Gregory and Marshall, 2012). In northeast Spain, grape yield was reduced by an increased water deficit in the reproductive stage since the 1960s (Camps and Ramos, 2012).

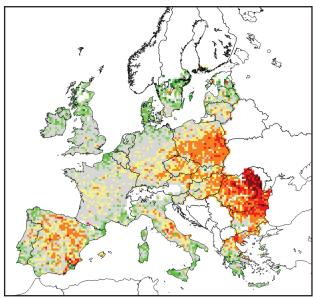
Insight into the potential effect of climate change on crops requires the combination of a wide range of emission scenarios, Global Climate Models (GCMs), and impact studies (Trnka et al., 2007; Soussana et al., 2010). In the EU27, a 2.5°C regional temperature increase in the 2080s under the B2 scenario could lead to small changes (on average +3%) in crop yields, whereas a 5.4°C regional warming under the A2 scenario could reduce mean yields by 10% according to a study based on regional climate models (Ciscar et al., 2011). An initial benefit from the increasing CO₂ concentration for rainfed crop yields would contrast by the end of the century with yield declines in most European sub-regions, although wheat yield could increase under the A2 scenario (three GCMs, B1, A2 scenarios; Supit et al., 2012). Disease-limited yields of rainfed wheat and maize in the 2030s does not show consistent trends across two GCMs (Donatelli et al., 2012). For a global temperature increase of 5°C, agroclimatic indices show an increasing frequency of extremely unfavorable years in European cropping areas (Trnka et al., 2011). Under the A2 and B2 scenarios, crop production shortfalls, defined as years with production below 50% of its average climate normal production would double by 2020 and triple by 2070 as compared to a current frequency of 1 to 3 years per decade in the currently most productive southern European regions of Russia (Alcamo et al., 2007).

The regional distribution of climate change impacts on agricultural production is likely to vary widely (Donatelli et al., 2012; Iglesias et al., 2012; see also Figure 23-4). Southern Europe would experience the largest yield losses (–25% by 2080 under a 5.4°C warming; Ciscar et al., 2011), with increased risks of rainfed summer crop failure (Ferrara et al., 2010; Bindi and Olesen, 2011; Ruiz-Ramos et al., 2011). Warmer and drier conditions by 2050 (Trnka et al., 2010, 2011) would cause moderate declines in crop yields in Central Europe regions (Ciscar et al.,

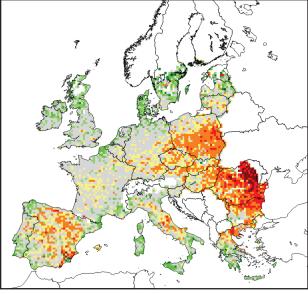
2011). In Western Europe, increased heat stress around flowering could cause considerable yield losses in wheat (Semenov, 2009). For Northern Europe, there is diverging evidence concerning future impacts. Positive yield changes combined with the expansion of climatically suitable areas could lead to crop production increases (between 2.5°C and 5.4°C regional warming) (Bindi and Olesen, 2011). However, increased climatic variability would limit winter crops expansion (Peltonen-Sainio et al., 2010) and cause at high latitudes high risk of marked cereal yield loss (Rötter et al., 2011). Spring crops from tropical origin like maize for silage could become cultivated in Finland by the end of the century (Peltonen-Sainio et al., 2009). Cereal yield reduction from ozone (Fuhrer, 2009) could reach 6 and 10 % in 2030 for the European Union with the B1 and A2 scenarios, respectively (Avnery et al., 2011a,b). Because of limited land availability and soil fertility outside of Chernozem (black earth) areas, the shift of agriculture to the boreal forest zone would not compensate for crop losses owing to increasing aridity in South European regions of Russia with the best soils (Dronin and Kirilenko, 2011).

With generally warmer and drier conditions, deep rooted weeds (Gilgen et al., 2010) and weeds with contrasting physiology, such as C₄ species, could pose a more serious threat (Bradley et al., 2010) to crops than shallow rooted C₃ weeds (Stratonovitch, 2012). Arthropod-borne diseases (viruses and phytoplasmas), winter infection root and stem diseases (phoma stem canker of oilseed rape and eyespot of wheat; Butterworth et al., 2010; West et al., 2012), Fusarium blight (Madgwick et al., 2011), grapevine moth (Caffarra et al., 2012), and a black rot fungus in fruit trees (Weber, 2009) could create increasing damages in Europe under climate change. However, other pathogens such as cereal stem rots (e.g., Puccinia striiformis; Luck et al., 2011) and grapevine powdery mildew (Caffarra et al., 2012) could be limited by increasing temperatures. Increased damages from plant pathogens and insect pests are projected by 2050 in Nordic countries, which have hitherto been protected by cold winters and geographic isolation (Hakala et al., 2011; Roos et al., 2011). Some pests, such as the European corn borer (Trnka et al., 2007), could also extend their climate niche in Central Europe. Pests and disease management will be affected with regard to timing, preference, and efficacy of chemical and biological measures of control (Kersebaum et al., 2008).

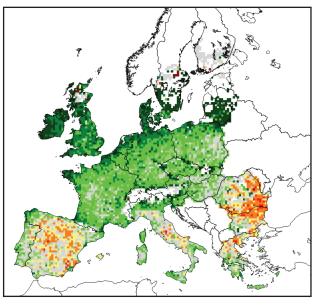

Autonomous adaptation by farmers, through the advancement of sowing and harvesting dates and the use of longer cycle varieties (Howden et al., 2007; Moriondo et al., 2010a, 2011; Olesen et al., 2011) could result in a general improvement of European wheat yields in the 2030s compared to the 2000s (Donatelli et al., 2012; see also Figure 23-4). However, farmer sowing dates seem to advance slower than crop phenology (Menzel et al., 2006; Siebert and Ewert, 2012), possibly because earlier sowing is often prevented by lack of soil workability and frost-induced soil crumbling (Oort et al., 2012). Simulation studies that anticipate on earlier sowing in Europe may thus be overly optimistic. Further adaptation options include changes in crop species, fertilization, irrigation, drainage, land allocation, and farming system (Bindi and Olesen, 2011). At the high range of the projected temperature changes, only plant breeding aimed at increasing yield potential jointly with drought resistance and adjusted agronomic practices may reduce risks of yield shortfall (Olesen et al., 2011; Rötter et al., 2011; Ventrella et al., 2012). Crop breeding is, however, challenged by temperature and rainfall variability, since (1) breeding has not yet succeeded in altering

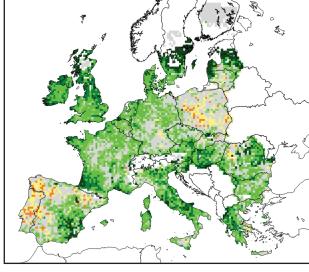

crop plant development responses to short-term changes in temperature (Parent and Tardieu, 2012), and (2) distinct crop drought tolerance traits are required for mild and severe water deficit scenarios (Tardieu, 2012). Adaptation to increased climatic variability may require an increased use of between and within species genetic diversity in farming systems

(Smith and Olesen, 2010) and the development of insurance products against weather-related yield variations (Musshoff et al., 2011). Adaptive capacity and long-term economic viability of farming systems may vary given farm structural change induced by climate change (Moriondo et al., 2010b; Mandryk et al., 2012). In Southern Europe, the regional welfare


Percent difference of water-limited yield for wheat

A1B scenario, HadCM3, 2030-2000 (baseline)





Percent difference of water-limited yield for wheat with adaptation A1B scenario, ECHAM5, 2030-2000 (baseline)

Percent difference of water-limited yield for wheat with adaptation A1B scenario, HadCM3, 2030-2000 (baseline)

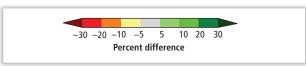


Figure 23-4 | Percentage change in simulated water-limited yield for winter wheat in 2030 with respect to the 2000 baseline for the A1B scenario using European Centre for Medium Range Weather Forecasts and Hamburg 5 (ECHAM5; left column) and Hadley Centre Coupled Model version 3 (HadCM3; right) General Circulation Models (GCMs). Upper maps do not take adaptation into account. Bottom maps include adaptation. Analysis developed at the Joint Research Centre of the European Commission. Source: Donatelli et al., 2012.

loss caused by changes in the agriculture sector under a high warming scenario (+5.4°C) was estimated at 1% of gross domestic product (GDP). Northern Europe was the single sub-region with welfare gains (+0.7%) from agriculture in this scenario (Ciscar et al., 2011).

23.4.2. Livestock Production

Livestock production is adversely affected by heat (Tubiello et al., 2007; see also Section 7.2.1.3). With intensive systems, heat stress reduced dairy production and growth performance of large finishing pigs at daily mean air temperatures above 18°C and 21°C, respectively (André et al., 2011; Renaudeau et al., 2011). High temperature and air humidity during breeding increased cattle mortality risk by 60% in Italy (Crescio et al., 2010). Adaptation requires changes in diets and in farm buildings (Renaudeau et al., 2012) as well as targeted genetic improvement programs (Hoffmann, 2010).

With grass-based livestock systems, model simulations (A1B scenario, ensemble of downscaled GCMs) show by the end of the 21st century increases in potential dairy production in Ireland and France, with, however, higher risks of summer-autumn production failures in Central Europe and at French sites (Trnka et al., 2009; Graux et al., 2012). Climate conditions projected for the 2070s in central France (A2 scenario) reduced significantly grassland production in a 4-year experiment under elevated CO₂ (Cantarel et al., 2013). At the same site, a single experimental summer drought altered production during the next 2 years (Zwicke et al., 2013).

Resilience of grassland vegetation structure was observed to prolonged experimental heating and water manipulation (Grime et al., 2008). However, weed pressure from tap-rooted forbs was increased after severe experimental summer droughts (Gilgen et al., 2010). Mediterranean populations could be used to breed more resilient and better adapted forage plant material for livestock production (Poirier et al., 2012).

Climate change has affected animal health in Europe (high confidence). The spread of bluetongue virus in sheep across Europe has been partly attributed to climate change (Arzt et al., 2010; Guis et al., 2012) through increased seasonal activity of the Culicoides vector (Wilson and Mellor, 2009). The distribution of this vector is unlikely to expand but its abundance could increase in Southern Europe (Acevedo et al., 2010). Ticks, the primary arthropod vectors of zoonotic diseases in Europe (e.g., Lyme disease and tick-borne encephalitis), have changed distributions towards higher altitudes and latitudes with climate change (Randolph and Rogers, 2010; van Dijk et al., 2010; Petney et al., 2012; see also Section 23.5). Exposure to fly strike could increase in a warmer climate but adaptation in husbandry practices would limit impacts on livestock (Wall and Ellse, 2011). The overall risk of incursion of Crimean-Congo hemorrhagic fever virus in livestock through infected ticks introduced by migratory bird species would not be increased by climate change (Gale et al., 2012). The probability of introduction and large-scale spread of Rift Valley fever in Europe is also very low (Chevalier et al., 2010). Epidemiological surveillance and increased coordinated regional monitoring and control programs have the potential to reduce the incidence of vector-borne animal diseases (Wilson and Mellor, 2009; Chevalier et al., 2010).

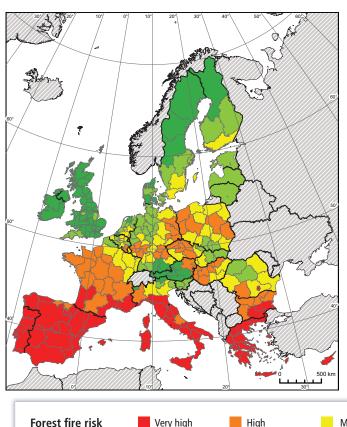
23.4.3. Water Resources and Agriculture

Future projected trends confirm the widening of water resource differences between Northern and Southern Europe reported in AR4 (Alcamo et al., 2007). In Southern Europe, soil water content will decline, saturation conditions and drainage will be increasingly rare and restricted to periods in winter and spring, and snow accumulation and melting will change, especially in the mid-mountain areas (García-Ruiz et al., 2011). Across most of Northern and Continental Europe, an increase in flood hazards (Falloon and Betts, 2010; see also Section 23.3.1) could increase damages to crops and plant growth, complicate soil workability, and increase yield variability (Olesen et al., 2011). Groundwater recharge and/or water table level would be significantly reduced by the end of the 21st century under A2 scenario for river basins located in southern Italy, Spain, northern France, and Belgium (Ducharne et al., 2010; Goderniaux et al., 2011; Guardiola-Albert and Jackson, 2011; Senatore et al., 2011). However, nonsignificant impacts were found for aquifers in Switzerland and in England (Jackson et al., 2011; Stoll et al., 2011). Less precipitation in summer and higher rainfall during winter could increase nitrate leaching (Kersebaum et al., 2008) with negative impacts on water quality (Bindi and Olesen, 2011). Even with reduced nitrogen fertilizer application, groundwater nitrate concentrations would increase by the end of the century in the Seine river basin (Ducharne et al., 2007). More robust water management, pricing, and recycling policies to secure adequate future water supply and prevent tensions among users could be required in Southern Europe (García-Ruiz et al., 2011).

Reduced suitability for rainfed agricultural production (Henriques et al., 2008; Daccache and Lamaddalena, 2010; Trnka et al., 2011; Daccache et al., 2012) will increase water demand for crop irrigation (Savé et al., 2012). However, increased irrigation may not be a viable option, especially in the Mediterranean area, because of projected declines in total runoff and groundwater resources (Olesen et al., 2011). In a number of catchments water resources are already over-licensed and/or overabstracted (Daccache et al., 2012) and their reliability is threatened by climate change-induced decline in groundwater recharge and to a lesser extent by the increase in potential demand for irrigation (Ducharne et al., 2010; Majone et al., 2012). To match this demand, irrigation system costs could increase by 20 to 27% in southern Italy (Daccache and Lamaddalena, 2010) and new irrigation infrastructures would be required in some regions (van der Velde et al., 2010). However, since the economic benefits are expected to be small, the adoption of irrigation would require changes in institutional and market conditions (Finger et al., 2011). Moreover, since aquatic and terrestrial ecosystems are affected by agricultural water use (Kløve et al., 2011), irrigation demand restrictions are projected in environmentally focussed future regional scenarios (Henriques et al., 2008). Earlier sowing dates, increased soil organic matter content, low-energy systems, deficit irrigation, and improved water use efficiency of irrigation systems and crops can be used as adaptation pathways (Gonzalez-Camacho et al., 2008; Lee et al., 2008; Daccache and Lamaddalena, 2010; Schutze and Schmitz, 2010), especially in Southern and southeastern regions of Europe (Trnka et al., 2009; Falloon and Betts, 2010). Improved water management in upstream agricultural areas could mitigate adverse impacts downstream (Kløve et al., 2011), and groundwater recharge could be targeted in areas with poor water-holding soils (Wessolek and Asseng, 2006).

23.4.4. Forestry

Observed and future responses of forests to climate change include changes in growth rates, phenology, composition of animal and plant communities, increased fire and storm damage, and increased insect and pathogen damage. Tree mortality and forest decline due to severe drought events were observed in forest populations in Southern Europe (Bigler et al., 2006; Raftoyannis et al., 2008; Affolter et al., 2010), including Italy (Giuggiola et al., 2010; Bertini et al., 2011), Cyprus (ECHOES Country Report: Cyprus, 2009), and Greece (Raftoyannis et al., 2008), as well as in Belgium (Kint et al., 2012), Switzerland (Rigling et al., 2013), and the pre-Alps in France (Rouault et al., 2006; Allen et al., 2010; Charru et al., 2010). Declines have also been observed in wet forests not normally considered at risk of drought (Choat et al., 2012). An increase in forest productivity has been observed in the Russian Federation (Sirotenko and Abashina, 2008).


Future projections show that, in Northern and Atlantic Europe, increasing atmospheric CO_2 and higher temperatures are expected to increase forest growth and wood production, at least in the short to medium term (Lindner et al., 2010). On the other hand, in Southern and Eastern Europe, increasing drought and disturbance risks will cause adverse effects and productivity is expected to decline (Sirotenko and Abashina, 2008; Lavalle et al., 2009; Lindner et al., 2010; Hlásny et al., 2011; Keenan

et al., 2011; Silva et al., 2012). By 2100, climate change is expected to reduce the economic value of European forest land depending on interest rate and climate scenario, which equates to potential damages of several hundred billion euros (Hanewinkel et al., 2013).

In Southern Europe, fire frequency and wildfire extent significantly increased after the 1970s compared with previous decades (Pausas and Fernández-Muñoz, 2012) as a result of fuel accumulation (Koutsias et al., 2012), climate change (Lavalle et al., 2009), and extreme weather events (Camia and Amatulli, 2009; Hoinka et al., 2009; Carvalho et al., 2011; Koutsias et al., 2012; Salis et al., 2013), especially in the Mediterranean basin (Fernandes et al., 2010; Margues et al., 2011; Koutsias et al., 2012; Pausas and Fernández-Muñoz, 2012). The most severe events in France, Greece, Italy, Portugal, Spain, and Turkey in 2010 were associated with strong winds during a hot dry period (EEA, 2010c). However, for the Mediterranean region as a whole, the total burned area has decreased since 1985 and the number of wildfires has decreased from 2000 to 2009, with large interannual variability (Marques et al., 2011; San-Miguel-Ayanz et al., 2012; Turco et al., 2013). Megafires, triggered by extreme climate events, had caused record maxima of burnt areas in some Mediterranean countries during the last decades (San-Miguel-Ayanz et al., 2013).

Future wildfire risk is projected to increase in Southern Europe (Lindner et al., 2010; Carvalho et al., 2011; Dury et al., 2011; Vilén and Fernandes,

(a) Baseline climate (1961-1990)

(b) climate scenario 2041-2070 (A1B emission scenario)

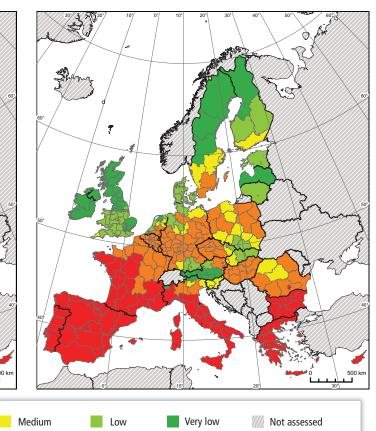


Figure 23-5 | Forest fire risk in Europe for two time periods: baseline (left) and 2041–2070 (right), based on high-resolution regional climate models and the Special Report on Emission Scenarios (SRES) A1B emission scenario. Forest fire risk indicator is based on climate and non-climate factors (e.g., fuel availability, fire ignition potential). Source: Lung et al., 2013.

2011), with an increase in the occurrence of high fire danger days (Arca et al., 2012; Lung et al., 2012) and in fire season length (Pellizzaro et al., 2010). The annual burned area is projected to increase by a factor of 3 to 5 in Southern Europe compared to the present under the A2 scenario by 2100 (Dury et al., 2011). In Northern Europe, fires are projected to become less frequent due to increased humidity (Rosan and Hammarlund, 2007). Overall, the projected increase in wildfires is likely to lead to a significant increase in greenhouse gas (GHG) emissions due to biomass burning (Pausas et al., 2008; Vilén and Fernandes, 2011; Chiriacò et al., 2013), even if often difficult to quantify (Chiriacò et al., 2013).

Wind storm damage to forests in Europe has recently increased (Usbeck et al., 2010). Boreal forests will become more vulnerable to autumn/early spring storm damage due to expected decrease in period of frozen soil (Gardiner et al., 2010). Increased storm losses by 8 to 19% under A1B and B2 scenarios, respectively, is projected in western Germany for 2060–2100 compared to 1960–2000, with the highest impacts in the mountainous regions (Pinto et al., 2010; Klaus et al., 2011).

An increase in the incidence of diseases has been observed in many European forests (Marcais and Desprez-Loustau, 2007; FAO, 2008b). In Continental Europe, some species of fungi benefit from milder winters and others spread during drought periods from south to north (Drenkhan et al., 2006; Hanso and Drenkhan, 2007). Projected increased late summer warming events will favor diffusion of bark beetle in Scandinavia, in

lowland parts of Central Europe, and Austria (Jönsson et al., 2009, 2011; Seidl et al., 2009).

Possible response approaches to the impacts of climate change on forestry include short- and long-term strategies that focus on enhancing ecosystem resistance and resilience and responding to potential limits to carbon accumulation (Millar et al., 2007; Nabuurs et al., 2013). Fragmented small-scale forest ownership can constrain adaptive capacity (Lindner et al., 2010). Landscape planning and fuel load management may reduce the risk of wildfires but may be constrained by the higher flammability owing to warmer and drier conditions (Moreira et al., 2011). Strategies to reduce forest mortality include preference of species better adapted to relatively warm environmental conditions (Resco de Dios et al., 2007). The selection of tolerant or resistant families and clones may also reduce the risk of damage by pests and diseases in pure stands (Jactel et al., 2009).

23.4.5. Bioenergy Production

The potential distribution of temperate oilseeds (e.g., oilseed rape, sunflower), starch crops (e.g., potatoes), cereals (e.g., barley), and solid biofuel crops (e.g., sorghum, *Miscanthus*) is projected to increase in Northern Europe by the 2080s, as a result of increasing temperatures, and to decrease in Southern Europe due to increased drought frequency

Box 23-1 | Assessment of Climate Change Impacts on Ecosystem Services by Sub-region

Ecosystems provide a number of vital provisioning, regulating, and cultural services for people and society that flow from the stock of natural capital (Stoate et al., 2009; Harrison et al., 2010). Provisioning services such as food from agro-ecosystems or timber from forests derive from intensively managed ecosystems; regulating services underpin the functioning of the climate and hydrological systems; and cultural services such as tourism, recreation, and aesthetic value are vital for societal well-being (see Section 23.5.4). The table summarizes the potential impacts of climate change on ecosystem services in Europe by sub-region based on an assessment of the published literature (2004–2013). The direction of change (increasing, decreasing, or neutral) is provided, as well as the number of studies/papers on which the assessment was based (in parentheses). Empty cells indicate the absence of appropriate literature. Unless otherwise stated, impacts assume no adaptation and are assessed for the mid-century (2050s). A decrease in natural hazard regulation (e.g., for wildfires) implies an increased risk of the hazard occurring. Biodiversity is included here as a service (for completeness), although it is debated whether biodiversity should be considered as a service or as part of the natural capital from which services flow. What is agreed, however, is that biodiversity losses within an ecosystem will have deleterious effects on service provision (Mouillot et al., 2013).

The provision of ecosystem services in Southern Europe is projected to decline across all service categories in response to climate change (high confidence). Other European sub-regions are projected to have both losses and gains in the provision of ecosystem services (high confidence). The Northern sub-region will have increases in provisioning services arising from climate change (high confidence). Except for the Southern sub-region, the effects of climate change on regulating services are balanced with respect to gains and losses (high confidence). There are fewer studies for cultural services, although these indicate a balance in service provision for the Alpine and Atlantic regions, with decreases in service provision for the Continental, Northern, and Southern sub-regions (low confidence).

Continued next page →

Box 23-1 (continued)

			Southern	Atlantic	Continental	Alpine	Northern
Provisioning services	Food production		↓ (1)	↓ (1)	↓ (1)	No (1) ↓ (4)	↑ (1) ↓ (1)
	Livestock production					No (1) ↓ (1)	
	Fiber production					↓ (1)	
	Bioenergy production		↓ (1)			↑ (1)	↑ (1)
	Fish production		No (1) ↓ (2)	No (1) ↓ (1)	↓ (1)		No (1) ↓ (1)
	Timber production Non-wood forest products		↓ (2)	↑ (2) No (3)	↑ (1) No (2) ↓ (1)	↑ (5) No (2) ↓ (5)	↑ (6) No (1)
			↓ (1)				↑ (1) No (1)
	Sum of effects on provisioning services		No (1) ↓ (7)	↑ (2) No (4) ↓ (2)	↑ (1) No (2) ↓ (3)	↑ (6) No (4) ↓ (11)	↑ (9) No (3) ↓ (2)
Regulating services	Climate regulation (carbon sequestration)	General/forests	↑ (3) ↓ (1)	↑ (4) No (1)	↑ (3) No (1)	↑ (4) No (1) ↓ (3)	↑ (4) No (1) ↓ (1)
		Wetland	No (1) ↓ (1)	No (1) ↓ (1)	↓ (1)		No (1) ↓ (1)
		Soil carbon stocks	No (1) ↓ (1)	No (1) ↓ (2)	No (1) ↓ (1)	No (1) ↓ (2)	↓ (3)
	Pest control		↓ (1)		↑ (1)	↑ (1)	↑ (1)
	Natural hazard	Forest fires/wildfires	↓ (1)	↓ (1)	↓ (2)		
	regulation ^a	Erosion, avalanche, landslide				↑ (2) ↓ (1)	
		Flooding				↓ (1)	
		Drought	No (1) ↓ (1)		↓ (1)		
	Water quality regulation			↓ (1)			↓ (1)
	Biodiversity		↑ (1) ↓ (8)	↑ (2) No (1) ↓ (4)	↑ (2) ↓ (4)	↑ (2) ↓ (4)	↑ (3) ↓ (2)
	Sum of effects on regulating services		↑ (4) No (3) ↓ (14)	↑ (6) No (4) ↓ (9)	↑ (6) No (2) ↓ (9)	↑ (9) No (2) ↓ (11)	↑ (8) No (2) ↓ (8)
Cultural services	Recreation (fishing, nature enjoyment)		↑ (1)	↓ (1)			↑ (1) ↓ (2)
	Tourism (skiing)					↑ (1)	1 (1)
	Aesthetic/heritage (landscape character, cultural landscapes)		↓ (1)	↓ (1)	No (1) ↓ (1)	1 (1)	
	Sum of effects on cultural services		↓ (2)	↑ (1) ↓ (1)	No (1) ↓ (1)	↑ (1) ↓ (1)	↑ (1) ↓ (3)

^{↓ =} Climate change impacts are decreasing ecosystem service

No = Neutral effect

Entries for biodiversity are those that were found during the literature search for climate change impacts on ecosystem services. A wider discussion of the impacts of climate change on biodiversity can be found in Sections 4.3.4 and 23.6.

References: Wessel et al. (2004); Schroter et al. (2005); Fuhrer et al. (2006); Koca et al. (2006); Gret-Regamy et al. (2008); Hemery (2008); Metzger et al. (2008); Palahi et al. (2009); Bolte et al. (2009); Garcia-Fayos and Bochet (2009); Johnson et al. (2009); Albertson et al. (2010); Canu et al. (2010); Clark et al. (2010a); Lindner et al. (2010); Lorz et al. (2010); Milad et al. (2011); Okruszko et al. (2011); Seidl et al. (2011); Briner et al. (2012); Civantos et al. (2012); Rusch (2012); Bastian (2013); Forsius et al. (2013); Gret-Regamy et al. (2013); Seidl and Lexer (2013).

^{(1) =} Numbers in brackets refer to the number of studies supporting the change (increasing, decreasing, neutral) in ecosystem service.

^{↑ =} Climate change impacts are increasing ecosystem service

^aA decline in ecosystem services implies an increased risk of the specified natural hazard.

(Tuck et al., 2006). Mediterranean oil and solid biofuel crops, currently restricted to Southern Europe, are likely to extend further north (Tuck et al., 2006). The physiological responses of bioenergy crops, in particular C₃ Salicaceae trees, to rising atmospheric CO₂ concentration may increase drought tolerance because of improved plant water use; consequently yields in temperate environments may remain high in future climate scenarios (Oliver et al., 2009).

A future increase in the northward extension of the area for short rotation coppice (SRC) cultivation leading to GHG neutrality is expected (Liberloo et al., 2010). However, the northward expansion of SRC would erode the European terrestrial carbon sink due to intensive management and high turnover of SRC compared to conventional forest where usually harvesting is less than annual growth (Liberloo et al., 2010).

23.4.6. Fisheries and Aquaculture

In AR4, Easterling et al. (2007) reported that the recruitment and production of marine fisheries in the North Atlantic are likely to increase. In European seas, warming causes a displacement to the north and/or in depth of fish populations (Daufresne et al., 2009; see also Chapter 6; Section 23.6.4), which has a direct impact on fisheries (Tasker, 2008; Cheung et al., 2010, 2013). For instance, in British waters, the lesser sandeel (Ammodytes marinus), which is a key link in the food web, shows declining recruitments since 2002 and is projected to further decline in the future with a warming climate (Heath et al., 2012). In the Baltic Sea, although some new species would be expected to immigrate because of an expected increase in sea temperature, only a few of these would be able to successfully colonize the Baltic because of its low salinity (Mackenzie et al., 2007). In response to climate change and intensive fishing, widespread reductions in fish body size (Daufresne et al., 2009) and in the mean size of zooplankton (Beaugrand and Reid, 2012) have been observed over time and these trends further affect the sustainability of fisheries (Pitois and Fox, 2006; Beaugrand and Kirby, 2010; see also Chapter 6). Aquaculture can be affected as the areal extent of some habitats that are suitable for aquaculture can be reduced by sea level rise. Observed higher water temperatures have adversely affected both wild and farmed freshwater salmon production in the southern part of the distribution areas (Jonsson and Jonsson, 2009). In addition, ocean acidification may disrupt the early developmental stages of shellfish (Callaway et al., 2012).

Numerous studies confirm the amplification through fishing of the effects of climate change on population dynamics and consequently on fisheries (Planque et al., 2010). The decline of the North Sea cod during the 1980–2000 period resulted from the combined effects of overfishing and of an ecosystem regime shift due to climate change (Beaugrand and Kirby, 2010). Over the next decade, this stock was not restored from its previous collapse (Mieszkowska et al., 2009; ICES, 2010). In the North and Celtic Seas, the steep decline in boreal species (Henderson, 2007) was compensated for by the arrival of southern (Lusitanian) species (ter Hofstede et al., 2010; Engelhard et al., 2011; Lenoir et al., 2011).

Climate change may reinforce parasitic diseases and impose severe risks for aquatic animal health (see Chapter 6). As water temperatures increase, a number of endemic diseases of both wild and farmed salmonid populations are *likely* to become more prevalent and threats associated with exotic pathogens may rise (Marcos-Lopez et al., 2010). In the Iberian Atlantic, the permitted harvesting period for the mussel aquaculture industry was reduced because of harmful algal blooms resulting from changes in phytoplankton communities linked to a weakening of the Iberian upwelling (Perez et al., 2010). With freshwater systems, summer heat waves boost the development of harmful cyanobacterial blooms (Johnk et al., 2008). For oysters in France, toxic algae may be linked to both climate warming and direct anthropogenic stressors (Buestel et al., 2009).

Fishery management thresholds will have to be reassessed as the ecological basis on which existing thresholds have been established changes, and new thresholds will have to be developed for immigrant species (Mackenzie et al., 2007; Beaugrand and Reid, 2012). These changes may lead to loss of productivity, but also the opening of new fishing opportunities, depending on the interactions between climate impacts, fishing grounds, and fleet types. They will also affect fishing regulations, the price of fish products, and operating costs, which in turn will affect the economic performance of the fleets (Cheung et al., 2012). Climate change impacts on fisheries profits range from negative for sardine fishery in the Iberian Atlantic fishing grounds (Garza-Gil et al., 2010; Perez et al., 2010) to nonsignificant for the Bay of Biscay (Le Floc'h et al., 2008) and positive on the Portuguese coast, since most of the immigrant fish species are marketable (Vinagre et al., 2011). Human social fishing systems dealing with high variability upwelling systems with rapidly reproducing fish species may have greater capacities to adjust to the additional stress of climate change than human social fishing systems focused on longer-lived and generally less variable species (Perry et al., 2010, 2011). Climate change adaptation is being considered for integration in European maritime and fisheries operational programs (EC, 2013c).

23.5. Implications of Climate Change for Health and Social Welfare

23.5.1. Human Population Health

Climate change is likely to have a range of health effects in Europe. Studies since AR4 have confirmed the effects of heat on mortality and morbidity in European populations and particularly in older people and those with chronic disease (Kovats and Hajat, 2008; Aström et al., 2011; Corobov et al., 2012, 2013). With respect to sub-regional vulnerability, populations in Southern Europe appear to be most sensitive to hot weather (Michelozzi et al., 2009; D'Ippoliti et al., 2010; Baccini et al., 2011), and also will experience the highest heat wave exposures (Figure 23-2). However, populations in Continental (Hertel et al., 2009) and Northern Europe (Rocklöv and Forsberg, 2010; Armstrong et al., 2011; Varakina et al., 2011) are also vulnerable to heat wave events. Adaptation measures to reduce heat health effects include heat wave plans (Bittner et al., 2013) which have been shown to reduce heat-related mortality in Italy (Schifano et al., 2012), but evidence of effectiveness is still very limited (Hajat et al., 2010; Lowe et al., 2011). There is little information about how future changes in housing and infrastructure (Section 23.3.2) would reduce the regional or local future burden of heat-related mortality or morbidity. Climate change is likely to increase future heat-related

mortality (Baccini et al., 2011; Ballester et al., 2011; Huang et al., 2011) and morbidity (Åström et al., 2013), although most published risk assessments do not include consideration of adaptation (Huang et al., 2011). For most countries in Europe, the current burden of cold-related mortality (Analitis et al., 2008) is greater than the burden of heat mortality. Climate change is likely to reduce future cold-related mortality (Ballester et al., 2011; HPA, 2012; see also Section 11.4.1).

Mortality and morbidity associated with flooding is becoming better understood, although the surveillance of health effects of disasters remains inadequate (WHO, 2013). Additional flood mortality due to sea level rise has been estimated in the Netherlands (Maaskant et al., 2009) and in the UK for river flooding (Hames and Vardoulakis, 2012), but estimates of future mortality due to flooding are highly uncertain. There remains limited evidence regarding the long-term mental health impacts of flood events (Paranjothy et al., 2011; WHO, 2013).

Evidence about future risks from climate change with respect to infectious diseases is still limited (Semenza and Menne, 2009; Randolph and Rogers, 2010; Semenza et al., 2012). There have been developments in mapping the current and potential future distribution of important disease vector species in Europe. The Asian tiger mosquito *Aedes albopictus* (a vector of dengue and Chikungunya; Queyriaux et al., 2008) is currently present in Southern Europe (ECDC, 2009) and may extend eastward and northward under climate change (Fisher et al., 2011; Roiz et al., 2011; Caminade et al., 2012). The risk of introduction of dengue remains very low because it would depend on the introduction and expansion of the *Aedes aegypti* together with the absence of effective vector control measures (ECDC, 2012).

Climate change is unlikely to affect the distribution of visceral and cutaneous leishmaniasis (currently present in the Mediterranean region) in the near term (Ready, 2010). However, in the long term (15 to 20 years), there is potential for climate change to facilitate the expansion of either vectors or current parasites northwards (Ready, 2010). The risk of introduction of exotic *Leishmania* species was considered very low due to the low competence of current vectors (Fischer, D. et al., 2010). The effect of climate change on the risk of imported or locally transmitted (autochthonous) malaria in Europe has been assessed in Spain (Sainz-Elipe et al., 2010), France (Linard et al., 2009), and the UK (Lindsay et al., 2010). Disease re-emergence would depend on many factors, including the introduction of a large population of infectious people or mosquitoes, high levels of people-vector contact, resulting from significant changes in land use, as well as climate change (see Chapter 11).

Since AR4, there has been more evidence on implications of climate change on food safety at all stages from production to consumption (FAO, 2008a; Jacxsens et al., 2010; Popov Janevska et al., 2010). The sensitivity of salmonellosis to ambient temperature has declined in recent years (Lake et al., 2009) and the overall incidence of salmonellosis is declining in most European countries (Semenza et al., 2012). Climate change may also have effects on food consumption patterns. Weather affects pre- and post-harvest mycotoxin production but the implications of climate change are unclear. Cold regions may become liable to temperate-zone problems concerning contamination with ochratoxin A, patulin, and *Fusarium* toxins (Paterson and Lima, 2010). Control of

the environment of storage facilities may avoid post-harvest problems but at additional cost (Paterson and Lima, 2010).

Other potential consequences concern marine biotoxins in seafood following production of phycotoxins by harmful algal blooms and the presence of pathogenic bacteria in foods following more frequent extreme weather conditions (Miraglia et al., 2009). There is little evidence that climate change will affect human exposures to contaminants in the soil or water (e.g., persistent organic pollutants). Risk modeling is often developed for single-exposure agents (e.g., a pesticide) with known routes of exposure. These are difficult to scale up to the population level. The multiple mechanisms by which climate may affect transmission or contamination routes also make this very complex (Boxall et al., 2009).

Adaptation in the health sector has so far been largely limited to the development of heat health warning systems, with many research gaps regarding effective adaptation options (HPA, 2012). A survey of national infectious disease experts in Europe identified several institutional changes that needed to be addressed to improve future responses to climate change risks: ongoing surveillance programs, collaboration with veterinary sector and management of animal disease outbreaks, national monitoring and control of climate-sensitive infectious diseases, health services during an infectious disease outbreak, and diagnostic support during an epidemic (Semenza et al., 2012).

23.5.2. Critical Infrastructure

Critical national infrastructure is defined as assets (physical or electronic) that are vital to the continued delivery and integrity of essential services on which a country relies, the loss or compromise of which would lead to severe economic or social consequences or to loss of life. Extreme weather events, such as floods, heat waves, and wild fires are known to damage critical infrastructure. The UK floods in 2007 led to significant damage to power and water utilities, and to communications and transport infrastructure (Chatterton et al., 2010; see also Table 23-1). Forest fires can affect transport infrastructure, as well as the destruction of buildings. Major storms in Sweden and Finland have led to loss of trees, with damage to the power distribution network, leading to electricity blackouts lasting weeks, as well as the paralysis of services such as rail transport and other public services that depend on grid electricity.

Health system infrastructure (hospitals, clinics) is vulnerable to extreme events, particularly flooding (Radovic et al., 2012). The heat waves of 2003 and 2006 had adverse effects on patients and staff in hospitals from overheating of buildings. Evidence from France and Italy indicate that death rates among in-patients increased significantly during heat wave events (Ferron et al., 2006; Stafoggia et al., 2008). Further, higher temperatures have had serious implications for the delivery of health care, as well drug storage and transport (Carmichael et al., 2013).

23.5.3. Social Impacts

There is little evidence regarding the implications of climate change for employment and/or livelihoods in Europe. However, the evidence so far (as reviewed in this chapter) indicates that there are likely to be changes

23

Chapter 23 Europe

to some industries (e.g., tourism, agriculture) that may lead to changes in employment opportunities by sub-region and by sector.

Current damages from weather-related disasters (floods and storms) are significant (Section 23.3.1). Disasters have long lasting effects on the affected populations (Schnitzler et al., 2007). Households are often displaced while their homes are repaired (Whittle et al., 2010). Little research has been carried out on the impact of extreme weather events such as heat waves and flooding on temporary or permanent displacement in Europe. Coastal erosion associated with sea level rise, storm surges, and coastal flooding will require coastal retreat in some of Europe's low-lying areas (Philippart et al., 2011). Managed retreat is also an adaptation option in some coastal areas. Concerns have been raised about equality of access to adaptation within coastal populations at risk from climate change. For example, a study in the UK found that vulnerability to climate change in coastal communities is likely to be increased by social deprivation (Zsamboky et al., 2011).

In the European region, the indigenous populations present in the Arctic are considered vulnerable to climate change impacts on livelihoods and food sources (ACIA, 2005; see also Sections 12.3, 28.2.4). Research has focused on indigenous knowledge, impacts on traditional food sources, and community responses/adaptation (Mustonen and Mustonen, 2011a,b). However, these communities are also experiencing rapid social, economic, and other non-climate-related environmental changes (such as oil and gas exploration; see Section 28.2.4). There is evidence that climate change has altered the seasonal behavior of pastoralist populations, such as the Nenets reindeer herders in northern Russia

(Amstislavski et al., 2013). However, socioeconomic factors may be more important than climate change for the future sustainability of reindeer husbandry (Rees et al., 2008; see also Section 28.2.3.5).

23.5.4. Cultural Heritage and Landscapes

Climate change will affect culturally valued buildings (Storm et al., 2008) through extreme events and chronic damage to materials (Brimblecombe et al., 2006; Brimblecombe and Grossi, 2010; Brimblecombe, 2010a, 2010b; Grossi et al., 2011; Sabbioni et al., 2012). Cultural heritage is a non-renewable resource and impacts from environmental changes are assessed over long time scales (Brimblecombe and Grossi, 2008, 2009, 2010; Grossi et al., 2008; Bonazza et al., 2009a,b). Climate change may also affect indoor environments where cultural heritage is preserved (Lankester and Brimblecombe, 2010) as well as visitor behavior at heritage sites (Grossi et al., 2010). There is also evidence to suggest that climate change and sea level rise will affect maritime heritage in the form of shipwrecks and other submerged archaeology (Björdal, 2012).

Surface recession on marble and compact limestone will be affected by climate change (Bonazza et al., 2009a). Marble monuments in Southern Europe will continue to experience high levels of thermal stress (Bonazza et al., 2009b) but warming is likely to reduce frost damage across Europe, except in Northern and Alpine Europe and permafrost areas (Iceland) (Grossi et al., 2007; Sabbioni et al., 2008). Damage to porous materials due to salt crystallization may increase all over Europe (Benavente et al., 2008; Grossi et al., 2011). In Northern and Eastern Europe, wood

Box 23-2 | Implications of Climate Change for European Wine and Vineyards

Wine production in Europe accounts for more than 60% of the global total (Goode, 2012) and makes an important contribution to cultural identity. Apart from impacts on grapevine yield, higher temperatures are also expected to affect wine quality in some regions and grape varieties by changing the ratio between sugar and acids (Duchêne et al., 2010; Bock et al., 2011; Santos et al., 2011). In Western and Central Europe, projected future changes could benefit wine quality, but might also demarcate new potential areas for viticulture (Malheiro et al., 2010). Adaptation measures are already occurring in some vineyards (e.g., vine management, technological measures, production control, and to a smaller extent relocation; Battaglini et al., 2009; Holland and Smit, 2010; Malheiro et al., 2010; Duarte Alonso and O'Neill, 2011; Moriondo et al., 2011; Santos et al., 2011). Vineyards may be displaced geographically beyond their traditional boundaries ("terroir" linked to soil, climate, and traditions; Metzger and Rounsevell, 2011) and, in principle, wine producers could adapt to this problem by growing grape varieties that are more suited to warmer climates. Such technical solutions, however, do not account for the unique characteristics of wine production cultures and consumer perceptions of wine quality that strongly affect the prices paid for the best wines (White et al., 2009; Metzger and Rounsevell, 2011). It would become very difficult, for example, to produce fine wines from the cool-climate Pinot Noir grape within its traditional "terroir" of Burgundy under many future climate scenarios, but consumers may not be willing to pay current day prices for red wines produced from other grape varieties (Metzger and Rounsevell, 2011). An additional barrier to adaptation is that wine is usually produced within rigid, regionally specific, regulatory frameworks that often prescribe, among other things, what grapes can be grown where, for example, the French AOC (Appellation d'Origine Controlee) or the Italian DOC (Denominazione di Origine Controllata) and DOCG (Denominazione di Origine Controllata e Garantita) designations. Suggestions have been made to replace these rigid concepts of regional identity with a geographically flexible "terroir" that ties a historical or constructed sense of culture to the wine maker and not to the region (White et al., 2009).

structures will need additional protection against rainwater and high winds (Sabbioni et al., 2012). AR4 concluded that current flood defenses would not protect Venice from climate change. Venice now has a flood forecasting system, and is introducing the MOSE (MOdulo Sperimentale Elettromeccanico) system of flood barriers (Keskitalo, 2010). Recent evidence suggests, however, that climate change may lead to a decrease in the frequency of extreme storm surges in this area (Troccoli et al., 2012a).

Europe has many unique rural landscapes, which reflect the cultural heritage that has evolved from centuries of human intervention, for example, the cork oak based Montado in Portugal, the Garrigue of southern France, Alpine meadows, grouse moors in the UK, machair in Scotland, peatlands in Ireland, the polders of Belgium and the Netherlands, and vineyards. Many, if not all, of these cultural landscapes are sensitive to climate change and even small changes in the climate could have significant impacts (Gifford et al., 2011). Alpine meadows, for example, are culturally important within Europe, but although there is analysis of the economics (tourism, farming) and functionality (water runoff, flooding, and carbon sequestration) of these landscapes there is very little understanding of how climate change will affect the cultural aspects on which local communities depend. Because of their societal value, cultural landscapes are often protected and managed through rural development and environmental policies. The peat-rich uplands of Northern Europe, for example, have begun to consider landscape management as a means of adapting to the effects of climate change (e.g., the moors for the future partnership in the Peak District National Park, UK). For a discussion of the cultural implications of climate change for vineyards, see Box 23-2.

23.6. Implications of Climate Change for the Protection of Environmental Quality and Biological Conservation

Terrestrial and freshwater ecosystems provide a number of vital services for people and society, such as biodiversity, food, fiber, water resources, carbon sequestration, and recreation (Box 23-1).

23.6.1. Air Quality

Climate change will have complex and local effects on pollution chemistry, transport, emissions, and deposition. Outdoor air pollutants have adverse effects on human health, biodiversity, crop yields, and cultural heritage. The main outcomes of concern are both the average (background) levels and peak events for tropospheric ozone, particulates, sulfur oxides (SO_x), and nitrogen oxides (NO_x). Future pollutant concentrations in Europe have been assessed using atmospheric chemistry models, principally for ozone (Forkel and Knoche, 2006, 2007). Reviews have concluded that GCM/Chemical Transport Model (CTM) studies find that climate change per se (assuming no change in future emissions or other factors) is likely to increase summer tropospheric ozone levels (range 1 to 10 ppb) by 2050s in polluted areas (i.e., where concentrations of precursor nitrogen oxides are higher) (AQEG, 2007; Jacob and Winner, 2009; see also Section 21.3.3.6). The effect of future climate change alone on future concentrations of particulates, nitrogen oxides, and volatile organic

compounds (VOCs) is much more uncertain. Higher temperatures also affect natural VOC emissions, which are ozone precursors (Hartikainen et al., 2012). One study has projected an increase in fire-related air pollution (ozone and particulate matter with aerodynamic diameter $<10 \mu m$ (PM₁₀)) in Southern Europe (Carvalho et al., 2011).

Overall, the model studies are inconsistent regarding future projections of background level and exceedances. Recent evidence has shown adverse impacts on agriculture from even low concentrations of ozone; however, there is more consistent evidence now regarding the threshold for health (mortality) impacts of ozone. Therefore, it is unclear whether increases in background levels below health-related thresholds would be associated with an increased burden of ill health.

Some studies have attributed an observed increase in European ozone levels to observed warming (Meleux et al., 2007), which appears to be driven by the increase in extreme heat events (Solberg et al., 2008). High ozone levels were observed during the major heat waves in Europe in multiple countries (Table 23-1). Wildfire events have had an impact on local and regional air quality (Hodzic et al., 2007; Liu et al., 2009; Miranda et al., 2009), with implications for human health (Analitis et al., 2012; Table 23-1).

23.6.2. Soil Quality and Land Degradation

The current cost of soil erosion, organic matter decline, salinization, landslides, and contamination is estimated to be €38 billion annually for the EU (JRC and EEA, 2010), in the form of damage to infrastructures, treatment of water contaminated through the soil, disposal of sediments, depreciation of land, and costs related to the ecosystem functions of soil (JRC and EEA, 2010). Projections show significant reductions in summer soil moisture in the Mediterranean region, and increases in the northeastern part of Europe (Calanca et al., 2006). Climate change impacts on erosion shows diverging evidence under the A2 scenario. In Tuscany, even with a decline in precipitation volume until 2070, in some months higher erosion rates would occur because of higher rainfall erosivity (Marker et al., 2008). For two Danish river catchments, assuming a steady-state land use, suspended sediment transport would increase by 17 to 27% by 2071–2100 (Thodsen, 2007; Thodsen et al., 2008). In Upper Austria, with the regional climate model HadRM3H, a small reduction in average soil losses is projected for croplands in all tillage systems, however, with high uncertainty (Scholz et al., 2008). In Northern Ireland, erosion decreases are generally projected with downscaled GCMs for a case study hillslope (Mullan et al., 2012).

Adaptive land use management can reduce the impact of climate change through soil conservation methods such as zero tillage and conversion of arable land to grasslands (Klik and Eitzinger, 2010). In central Europe, compared to conventional tillage, conservation tillage systems reduced modeled soil erosion rates under future climate scenarios by between 49 and 87% (Scholz et al., 2008). Preserving upland vegetation reduced both erosion and loss of soil carbon and favored the delivery of a high-quality water resource (McHugh, 2007; House et al., 2011). Maintaining soil water retention capacity, for example, through adaptation measures (Post et al., 2008), contributes to reduce risks of flooding as soil organic matter absorbs up to 20 times its weight in water.

23.6.3. Water Quality

Climate change may affect water quality in several ways, with implications for food production and forestry (Section 23.4), ecosystem functioning (Box 23-1), human and animal health, and compliance with environmental quality standards, including those of the Water Framework Directive. Shallower waters will witness a more rapid temperature increase than deeper waters, since heat is absorbed mainly in the upper water layers and turbulent mixing is truncated by shallow depth. In parallel, a decrease in saturating oxygen concentrations occurs. Since AR4, there is further evidence of adverse effects caused by extreme weather events: reductions in dissolved oxygen, algal blooms (Mooij et al., 2007; Ulén and Weyhenmeyer, 2007) during hot weather, and contamination of surface and coastal waters with sewage and/or chemicals (pesticides) after rainfall (Boxall et al., 2009). A reduction in rainfall may lead to low flows that increase concentrations of biological and chemical contaminants. Reduced drainage can also enhance sedimentation in drainage systems and hence enhance particle-bound phosphorous retention and reduce phosphorous load to downstream higher order streams (Hellmann and Vermaat, 2012).

Variability in changes in rainfall and runoff, as well as water temperature increases, will lead to differences in water quality impacts by sub-region. Climate change is projected to increase nutrient loadings: In Northern Europe this is caused by increased surface runoff, and in Southern Europe by increased evapotranspiration and increased concentrations due to reduced volumes of receiving lakes (Jeppesen et al., 2011). Local studies generally confirm this pattern. Increased nutrient loads are foreseen in Danish watersheds (Andersen et al., 2006), and in France (Delpla et al., 2011) and the UK (Whitehead et al., 2009; Howden et al., 2010; Macleod et al., 2012; see also Section 4.3.3.3). In larger rivers, such as the Meuse, increased summer temperature and drought can lead to more favorable conditions for algal blooms and reduced dilution capacity of effluent from industry and sewage works (van Vliet and Zwolsman, 2008).

23.6.4. Terrestrial and Freshwater Ecosystems

Current and projected future climate changes, including CO2 increase, are determining negative effects of habitat loss on species density and diversity (Rickebusch et al., 2008; Mantyka-pringle et al., 2012). Projected habitat loss is greater for species at higher elevations (Castellari, 2009; Engler et al., 2011; Dullinger et al., 2012) and suitable habitats for Europe's breeding birds are projected to shift nearly 550 km northeast by the end of the 21st century (Huntley et al., 2007). Aquatic habitats and habitat connectivity in river networks may become increasingly fragmented (Fronzek et al., 2006, 2010, 2011; Elzinga et al., 2007; Della Bella et al., 2008; Harrison et al., 2008; Blaustein et al., 2010; Gallego-Sala et al., 2010; Gómez-Rodríguez et al., 2010; Hartel et al., 2011; Morán-López et al., 2012). Despite some local successes and increasing responses, the rate of biodiversity loss does not appear to be slowing (Butchart et al., 2010). The effectiveness of Natura 2000 areas to respond to climate change has been questioned (Araújo et al., 2011). However, when considering connectivity related to the spatial properties of the network, the Natura 2000 network appears rather robust (Mazaris et al., 2013). Several studies now highlight the importance of taking into account climate change projections in the selection of conservation areas (Araújo et al., 2011; Ellwanger et al., 2011; Filz et al., 2013; Virkkala et al., 2013).

Observed changes in plant communities in European mountainous regions show a shift of species ranges to higher altitudes resulting in species richness increase in boreal-temperate mountain regions and decrease in Mediterranean mountain regions (Gottfried et al., 2012; Pauli et al., 2012). In Southern Europe, a great reduction in phylogenetic diversity of plant, bird, and mammal assemblages will occur, and gains are expected in regions of high latitude or altitude for 2020, 2050, and 2080. However, losses will not be offset by gains and a trend toward homogenization across the continent will be observed (Alkemade et al., 2011; Thuiller et al., 2011). Large range contractions due to climate change are projected for several populations of *Pinus cembra* and *Pinus* Sylvestris (Casalegno et al., 2010; Giuggiola et al., 2010) while for the dominant Mediterranean tree species, holm oak, a substantial range expansion is projected under the A1B emissions scenario (Cheaib et al., 2012). The human impacts on distribution of tree species landscape may make them more vulnerable to climate change (del Barrio et al., 2006; Hemery et al., 2010).

Observed climate changes are altering breeding seasons, timing of spring migration, breeding habitats, latitudinal distribution, and migratory behavior of birds (Jonzén et al., 2006; Lemoine et al., 2007a,b; Rubolini et al., 2007a,b; Feehan et al., 2009). A northward shift in bird community composition has been observed (Devictor et al., 2008). Common species of European birds with the lowest thermal maxima have showed the sharpest declines between 1980 and 2005 (Jiguet et al., 2010).

Projections for 120 native terrestrial non-volant European mammals suggest that 5 to 9% are at risk of extinction, assuming no migration, during the 21st century due to climate change, while 70 to 78% may be severely threatened under A1 and B2 climatic scenarios (Levinsky et al., 2007). Those populations not showing a phenological response to climate change may decline (Moller et al., 2008), such as amphibian and reptile species (Araújo et al., 2006), or experience ecological mismatches (Saino et al., 2011). Climate change can affect trophic interactions, as co-occurring species may not react in a similar manner. Novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species can occur (Keith et al., 2009; Montoya and Raffaelli, 2010; Schweiger et al., 2012).

Since invasive alien species rarely change their original climatic niches (Petitpierre et al., 2012), climate change can exacerbate the threat posed by invasive species to biodiversity in Europe (West et al., 2012), amplifying the effects of introduction of the exotic material such as alien bioenergy crops (EEA, 2012), pest and diseases (Aragòn and Lobo, 2012), tropical planktonic species (Cellamare et al., 2010), and tropical vascular plants (Skeffington and Hall, 2011; Taylor et al., 2012).

23.6.5. Coastal and Marine Ecosystems

Climate change will affect Europe's coastal and marine ecosystems by altering the biodiversity, functional dynamics, and ecosystem services of coastal wetlands, dunes, inter-tidal and subtidal habitats, offshore shelves, seamounts, and currents (Halpern et al., 2008) through changes

in eutrophication, invasive species, species range shifts, changes in fish stocks, and habitat loss (EEA, 2010d; Doney et al., 2011). The relative magnitude of these changes will vary temporally and spatially, requiring a range of adaptation strategies that target different policy measures, audiences, and instruments (Airoldi and Bec, 2007; Philippart et al., 2011).

Europe's northern seas are experiencing greater increases in sea surface temperatures (SSTs) than the southern seas, with the Baltic, North, and Black Seas warming at two to four times the mean global rate (Belkin, 2009; Philippart et al., 2011). In the Baltic, decreased sea ice will expose coastal areas to more storms, changing the coastal geomorphology (HELCOM, 2007; BACC Author Team, 2008). Warming SSTs will influence biodiversity and drive changes in depth and latitudinal range for intertidal and subtidal marine communities, particularly in the North and Celtic Seas (Sorte et al., 2010; Hawkins et al., 2011; Wethey et al., 2011).

Warming is affecting food chains and changing phenological rates (Durant et al., 2007). For example, changes in the timing and location of phytoplankton and zooplankton are affecting North Sea cod larvae (Beaugrand et al., 2010; Beaugrand and Kirby, 2010). Temperature changes have affected the distribution of fisheries in all seas over the past 30 years (Beaugrand and Kirby, 2010; Hermant et al., 2010). Warmer waters also increase the rate of the establishment and spread of invasive species, further altering trophic dynamics and the productivity of coastal marine ecosystems (Molnar et al., 2008; Rahel and Olden, 2008). Changes in the semi-enclosed seas could be indicative of future

conditions in other coastal-marine ecosystems (Lejeusne et al., 2009). In the Mediterranean, invasive species have arrived in recent years at the rate of one introduction every 4 weeks (Streftaris et al., 2005). While in this case the distribution of endemic species remained stable, most non-native species have spread northward by an average of 300 km since the 1980s, resulting in an area of spatial overlap with invasive species replacing natives by nearly 25% in 20 years.

Dune systems will be lost in some places due to coastal erosion from combined storm surge and sea level rise, requiring restoration (Day et al., 2008; Magnan et al., 2009; Ciscar et al., 2011). In the North Sea, the Iberian coast, and Bay of Biscay, a combination of coastal erosion, infrastructure development, and sea defenses may lead to narrower coastal zones ("coastal squeeze") (EEA, 2010d; OSPAR, 2010; Jackson and McIlvenny, 2011).

23.7. Cross-Sectoral Adaptation Decision Making and Risk Management

Studies on impacts and adaptation in Europe generally consider single sectors or outcomes, as described in the previous sections of this chapter. For adaptation decision making, more comprehensive approaches are required. Considerable progress has been made to advance planning and development of adaptation measures, including economic analyses (Section 23.7.6; see Box 23-3), and the development of climate services (WMO, 2011; Medri et al., 2012). At the international level, the European

Box 23-3 | National and Local Adaptation Strategies

The increasing number of national (EEA, 2013) and local (Heidrich et al., 2013) adaptation strategies in Europe has led to research on their evaluation and implementation (Biesbroek et al., 2010). Many adaptation strategies were found to be agendas for further research, awareness raising, and/or coordination and communication for implementation (e.g., Pfenniger et al., 2010; Dumollard and Leseur, 2011). Actual implementation often was limited to disaster risk reduction, environmental protection, spatial planning (Section 23.7.4), and coastal zone and water resources management. The implementation of planned adaptation at the national level was attributed to political will and good financial and information capacity (Westerhoff et al., 2011). Analysis of seven national adaptation strategies (Denmark, Finland, France, Germany, Netherlands, Spain, UK) found that although there is a high political commitment to adaptation planning and implementation, evaluation of the strategies and actual implementation is yet to be defined (Swart et al., 2009b; Biesbroek et al., 2010; Westerhoff et al., 2011). One of the earliest national adaptation strategies (Finland) has been evaluated, in order to compare identified adaptation measures with those launched in different sectors. It has found that although good progress has been made on research and identification of options, few measures have been implemented except in the water resources sector (Ministry of Agriculture and Forestry, 2009).

At the local government level, adaptation plans are being developed in several cities (EEA, 2013), including London (GLA, 2010), Madrid, Manchester, Copenhagen, Helsinki, and Rotterdam. Adaptation in general is a low priority for many European cities, and many plans do not have adaptation priority as the main focus (Carter, 2011). Many studies are covering sectors sensitive to climate variability, as well as sectors that are currently under pressure from socioeconomic development. A recent assessment found a lack of cross-sector impact and adaptation linkages as an important weakness in the city plans (Hunt and Watkiss, 2011). Flexibility in adaptation decision making needs to be maintained (Hallegatte et al., 2008; Biesbroek et al., 2010).

Union has started adaptation planning, through information sharing (Climate-ADAPT platform) and legislation (EC, 2013b). National and local governments are also beginning to monitor progress on adaptation, including the development of a range of indicators (UK-ASC, 2011).

allocation between upstream and downstream countries is challenging in regions exposed to prolonged droughts such as the Euphrates-Tigris river basin, where Turkey plans to more than double water abstraction by 2023 (EEA, 2010a).

23.7.1. Coastal Zone Management

Coastal zone management and coastal protection plans that integrate adaptation concerns are now being implemented. Underlying scientific studies increasingly assess effectiveness and costs of specific options (Hilpert et al., 2007; Kabat et al., 2009; Dawson et al., 2011; see also Section 23.7.6). Early response measures are needed for floods and coastal erosion, to ensure that climate change considerations are incorporated into marine strategies, with mechanisms for regular update (OSPAR, 2010; UNEP, 2010).

In the Dutch plan for flood protection, adaptation to increasing river runoff and sea level rise plays a prominent role (Delta Committee, 2008). It also includes synergies with nature conservation and freshwater storage (Kabat et al., 2009), and links to urban renovation (cost estimates are included in Section 23.7.6). Though that plan mostly relies on large-scale measures, new approaches such as small-scale containment of flood risks through compartmentalization are also studied (Klijn et al., 2009). The UK government has developed extensive adaptation plans (TE2100) to adjust and improve flood defenses for the protection of London from future storm surges and flooding (EA, 2009). An elaborate analysis has provided insight in the pathways for different adaptation options and decision-points that will depend on the eventual sea level rise (Box 5-1).

23.7.2. Integrated Water Resource Management

Water resources management in Europe has experienced a general shift from "hard" to "soft" measures that allow more flexible responses to environmental change (Pahl-Wostl, 2007). Integrated water resource management explicitly includes the consideration of environmental and social impacts (Wiering and Arts, 2006). Climate change has been incorporated into water resources planning in England and Wales (Arnell, 2011; Charlton and Arnell, 2011; Wade et al., 2013) and in the Netherlands (de Graaff et al., 2009). The robustness of adaptation strategies for water management in Europe has been tested in England (Dessai and Hulme, 2007) and Denmark (Haasnoot et al., 2012; Refsgaard et al., 2013). Other studies have emphasized the search for robust pathways, for instance, in the Netherlands (Kwadijk et al., 2010; Haasnoot et al., 2012).

Public participation has also increased in decision making, for example, river basin management planning (Huntjens et al., 2010), flood defense plans (e.g., TE2100), and drought contingency plans (Iglesias et al., 2007). Guidance has been developed on the inclusion of adaptation in water management (UNECE, 2009) and river basin management plans (EC, 2009b). Adaptation in the water sector could also be achieved through the EU Water Framework and Flood Directives (Quevauviller, 2011), but a study of decision makers, including local basin managers, identified several important barriers to this (Brouwer et al., 2013). Water

23.7.3. Disaster Risk Reduction and Risk Management

A series of approaches to disaster risk management are employed in Europe, in response to national and European policy developments to assess and reduce natural hazard risks. New developments since the AR4 include assessment and protection efforts in accordance with the EU Floods Directive (European Parliament and EU Council, 2007), the mapping of flood risks, and improvement of civil protection response and early warning systems (Ciavola et al., 2011). Most national policies address hazard assessment and do not include analyses of possible impacts (de Moel et al., 2009). The effectiveness of flood protection (Bouwer et al., 2010) and also non-structural or household level measures to reduce losses from river flooding has been assessed (Botzen et al., 2010a; Dawson et al., 2011). Some studies show that current plans may be insufficient to cope with increasing risks from climate change, as shown, for instance, for the Rhine River basin (te Linde et al., 2010a,b).

Other options that are being explored are the reduction of consequences, response measures, and increasing social capital (Kuhlicke et al., 2011), as well as options for insuring and transferring losses (Section 23.3.7). The Netherlands carried out a large-scale analysis and simulation exercise to study the possible emergency and evacuation response for a worst-case flood event (ten Brinke et al., 2010). Increasing attention is also being paid in Europe to non-government actions that can reduce possible impacts from extreme events. Terpstra and Gutteling (2008) found through a survey that individual citizens are willing to assume some responsibility for managing flood risk, and they are willing to contribute to preparations in order to reduce impacts. Survey evidence is available for Germany and the Netherlands that, under certain conditions, individuals can be encouraged to adopt loss prevention measures (Thieken et al., 2006; Botzen et al., 2009). Small businesses can reduce risks when informed about possibilities immediately after an event (Wedawatta and Ingirige, 2012).

23.7.4. Land Use Planning

Spatial planning policies can build resilience to the impacts of climate change (Bulkeley, 2010). However, the integration of adaptation into spatial planning is often limited to a general level of policy formulation that can sometimes lack concrete instruments and measures for implementation in practice (Mickwitz et al., 2009; Swart et al., 2009a). There is evidence to suggest the widespread failure of planning policy to account for future climate change (Branquart et al., 2008). Furthermore, a lack of institutional frameworks to support adaptation is, potentially, a major barrier to the governance of adaptation through spatial planning (ESPACE, 2007; Chapter 16). Climate change adaptation is often treated as a water management or flooding issue, which omits other important aspects of the contribution of land use planning to adaptation (Wilson, 2006; Mickwitz et al., 2009; Van Nieuwaal et al., 2009). For example, in the UK, houses were still being built in flood risk

areas (2001–2011) because of competing needs to increase the housing stock (ARUP, 2011).

City governance is also dominated by the issues of climate mitigation and energy consumption rather than adapting to climate change (Bulkeley, 2010; Heidrich et al., 2013). Some cities, for example, Rotterdam, have started to create climate adaptation plans and this process tends to be driven by the strong political leadership of mayors (Sanchez-Rodriguez, 2009). The Helsinki Metropolitan Area's Climate Change Adaptation Strategy (HSY, 2010) is a regional approach focusing on the built environment in the cities of Helsinki, Espoo, Vantaa, and Kauniainen, and their surroundings. It includes approaches for dealing with increasing heat waves, more droughts, milder winters, increasing (winter) precipitation, heavy rainfall events, river floods, storm surges, drainage water floods, and sea level rise.

Green infrastructure provides both climate adaptation and mitigation benefits as well as offering a range of other benefits to urban areas, including health improvements, amenity value, inward investment, and the reduction of noise and outdoor air pollution. Green infrastructure is an attractive climate adaptation option since it also contributes to the sustainable development of urban areas (Gill et al., 2007; James et al., 2009). Urban green space and green roofs can moderate temperature and decrease surface rainwater runoff (Gill et al., 2007). Despite the benefits of urban green space, conflict can occur between the use of land for green space and building developments (Hamin and Gurran, 2009).

European policies for biodiversity (e.g., the European Biodiversity Strategy (EC, 2011)) look to spatial planning to help protect and safeguard internationally and nationally designated sites, networks, and species, as well as locally valued sites in urban and non-urban areas, and to create new opportunities for biodiversity through the development process (Wilson, 2008). Conservation planning in response to climate change impacts on species aims to involve several strategies to better manage isolated habitats, increase colonization capacity of new climate zones, and optimize conservation networks to establish climate refugia (Vos et al., 2008).

23.7.5. Rural Development

Rural development is one of the key policy areas for Europe, yet there is little or no discussion about the role of climate change in affecting future rural development. The EU White Paper on adapting to climate change (EC, 2009a) encourages member states to embed climate change adaptation into the three strands of rural development aimed at improving competitiveness, the environment, and the quality of life in rural areas. It appears however that little progress has been made in achieving these objectives.

For example, the EUs Leader program was designed to help rural actors improve the long-term potential of their local areas by encouraging the implementation of sustainable development strategies. Many Leader projects address climate change adaptation, but only as a secondary or in many cases a non-intentional by-product of the primary rural development goals. The World Bank's community adaptation project has seen a preponderance of proposals from rural areas in Eastern Europe and Central Asia (Heltberg et al., 2012), suggesting that adaptation-based development needs in Eastern Europe are currently not being met by policy.

23.7.6. Economic Assessments of Adaptation

Compared to studies assessed in AR4 (WGII AR4 Section 17.2.3), cost estimates for Europe are increasingly derived from bottom-up and sector-specific studies, aimed at costing response measures (Watkiss and Hunt, 2010), in addition to the economy-wide assessments (Aaheim et al., 2012). The evidence base, however, is still fragmented and incomplete. The coverage of adaptation costs and benefit estimates is dominated by structural (physical) protection measures, where effectiveness and cost components can be more easily identified. For energy, agriculture, and infrastructure, there is medium coverage of cost and benefit categories. There is a lack of information regarding adaptation costs in the health and social care sector. Table 23-2 summarizes some of the more comprehensive cost estimates for Europe for sectors at regional and

Table 23-2 | Selected published cost estimates for planned adaptation in European countries.

Region	Cost estimate	Time period	Sectors/outcomes	Reference	
Europe	€2.6-3.5 billion yr-1	In 2100	Coastal adaptation costs	Hinkel et al. (2010)	
	€1.7 billion yr ⁻¹	By 2020s	Protection from river flood risk for EU27	Rojas et al. (2013)	
	€3.4 billion yr ⁻¹	By 2050s			
	€7.9 billion yr ⁻¹	By 2080s			
Netherlands	€1.2–1.6 billion yr ⁻¹	Up to 2050	Protection from coastal and river flooding	Delta Committee (2008)	
	€0.9–1.5 billion yr ⁻¹	2050–2100			
Sweden	Total of up to €2.4 billion	2010–2100	Investments in structural adaptation, information campaigns, and research	Swedish Commission on Climate and Vulnerability (2007)	
Italy	€0.4–2 billion	By 2080s	Coastal protection	Bosello et al. (2012)	
	Up to €44 billion	By 2080s	Hydrogeological protection	Medri et al. (2013)	
Greece	€0.4–3.3 billion	Up to 2100	Coastal protection	Bank of Greece (2011)	
United	€1.8 billion	Until 2035	Maintain and improve Thames flood protection	EA (2011)	
Kingdom	€2.2 billion	2035–2050	Renew and improve Thames flood protection		
	€7–8 billion	At 2100	New Thames barrier for London		

national levels. It is stressed that the costing studies use a range of methods and metrics and relate to different time periods and sectors, which renders robust comparison difficult. As an example, there are large differences between the cost estimates for coastal and river protection in the Netherlands and other parts of Europe (Table 23-2), which is due to the objectives for adaptation and the large differences in the level of acceptable risk. For example, Rojas et al. (2013) assess a 1-in-100 year level of protection for Europe, while the Netherlands has set standards up to 1-in-4000 and 10,000-year level return periods. More detailed treatment of the economics of adaptation is provided in Chapter 17.

23.7.7. Barriers and Limits to Adaptation

Implementation of adaptation options presents a range of opportunities, constraints, and limits. Constrains (barriers) to implementation are financial, technical, and political (see discussion in Chapter 16). Some impacts will be unavoidable due to physical, technological, social, economic, or political limits. Examples of limits in the European context are described by sector in Table 23-3. For example, the contraints on building or extending flood defenses would include pressure for land, conservation needs, and amenity value of coastal areas (Section 5.5.6).

Toward the end of the century, it is likely that adaptation limits will be reached earlier under higher rates of warming. Opportunities and cobenefits of adaptation are also discussed in Section 23.8.

23.8. Co-Benefits and Unintended Consequences of Adaptation and Mitigation

Scientific evidence for decision making is more useful if impacts are considered in the context of impacts on other sectors and in relation to adaptation, mitigation, and other important policy goals. The benefits

of adaptation and mitigation policies can be felt in the near term and in the local population, although benefits relating to GHG emissions reduction may not be apparent until the longer term. The benefits of adaptation measures are often assessed using conventional economic analyses, some of which include non-market costs and benefits (externalities) (Watkiss and Hunt, 2010). This section describes policies, strategies, and measures where there is good evidence regarding mitigation/adaptation costs and benefits. Few studies have quantified directly the trade-offs/synergies for a given policy.

23.8.1. Production and Infrastructure

Mitigation policies (decarbonization strategies) are likely to have important implications for dwellings across Europe. The unintended consequences of mitigation in the housing sector include changes to household energy prices and adverse effects from decreased ventilation in dwellings (Jenkins et al., 2008; Jenkins, 2009; Davies and Oreszczyn, 2012; Mavrogianni et al., 2012). The location, type, and dominant energy use of the building will determine its overall energy gain or loss to maintain comfort levels. Adaptation measures such as the use of cooling devices will probably increase a building's energy consumption if no other mitigation measures are applied. The potential for cooling dwellings without increased energy consumption, and with health benefits is large (Wilkinson et al., 2009).

When looking at the broader context of urban infrastructures, despite existing efforts to include both adaptation and mitigation into sustainable development strategies at the city level (e.g., Hague, Rotterdam, Hamburg, Madrid, London, Manchester), priority on adaptation still remains low (Carter, 2011). There is potential to develop strategies that can address both mitigation and adaptation solutions, as well as have health and environmental benefits (Milner et al., 2012). In energy supply, the adverse effect of climate change on water resources in some coastal regions in Southern Europe may further enhance the development of

Table 23-3 | Limits to adaptation to climate change.

Area/location	System	Adaptation measures	Limits to adaptation measure(s)	References	
Low-altitude/small-size ski resorts Ski tourism		Artificial snowmaking	Climatic, technological, and environmental constraints; economic viability; social acceptability of charging for previously free skiing; social acceptability of alternatives for winter sport/leisure	Steiger and Mayer (2008); Unbehaun et al. (2008); Steiger (2010, 2011); Landauer et al. (2012)	
Thermal power plants/cooling through river intake and discharge	Once-through cooling systems	Closed-circuit cooling	High investment cost for retrofitting existing plants	Koch and Vögele (2009); van Vliet et al. (2012); Hoffman et al. (2013)	
Rivers used for freight transport	Inland transport	Reduced load factor of inland ships	Increased transport prices (Rhine and Moselle market)	Jonkeren et al. (2007); Jonkeren (2009)	
		Use of smaller ships	Existing barges below optimal size (Rhine)	Demirel (2011)	
Agriculture, northern and continental Europe	Arable crops	Changing sowing date as agricultural adaptation	Other constraints (e.g., frost) limit farmer behavior.	Oort (2012)	
		Irrigation	Groundwater availability; competition with other users	Olesen et al. (2011)	
Agriculture, viticulture	High-value crops	Change distribution	Legislation on cultivar and geographical region	Box 23-1	
Conservation; cultural landscapes	Alpine meadow	Extend habitat	No technological adaptation option	Engler et al. (2011); Dullinger et al. (2012)	
Conservation of species richness Movement of sp		Extend habitat Landscape barriers and absence of climate projection selection of conservation areas		Butchart et al. (2010); Araújo et al. (2011); Filz et al. (2012); Virkkala et al. (2013)	
Forests	Movement of species and productivity reduction	Introduce new species	Not socially acceptable; legal barriers to non-native species	Casalegno et al. (2007); Giuggiola et al. (2010); Hemery et al. (2010); García- López and Alluéa (2011)	

desalination plants as an adaptation measure, possibly increasing energy consumption and thus GHG emissions. Coastal flood defense measures may alter vector habits and have implications for local vector-borne disease transmission (Medlock and Vaux, 2013).

In tourism, adaptation and mitigation may be antagonistic, as in the case of artificial snowmaking in European ski resorts, which requires significant amounts of energy and water (OECD, 2007; Rixen et al., 2011), and the case of desalination for potable water production, which also requires energy. However, depending on the location and size of the resort, implications are expected to differ and thus need to be investigated on a case-by-case basis. A similar relationship between adaptation and mitigation may hold for tourist settlements in Southern Europe, where expected temperature increases during the summer may require increased cooling to maintain tourist comfort and thus increase GHG emissions and operating costs. Furthermore, a change of tourist flows as a result of tourists adapting to climate change may affect transport emissions, while mitigation in transport could also lead to a change in transport prices and thus possibly affect tourist flows.

23.8.2. Agriculture, Forestry, and Bioenergy

Agriculture and forestry face two challenges under climate change, both to reduce emissions and to adapt to a changing and more variable climate (Lavalle et al., 2009; Smith and Olesen, 2010). The agriculture sector contributes about 10% of the total anthropogenic GHG emissions in the EU27 (EEA, 2010b). Estimates of European CO₂, methane, and NO_x fluxes between 2000 and 2005 suggest that methane emissions from livestock and NO_x emissions from agriculture are fully compensated for by the CO₂ sink provided by forests and by grassland soils (Schulze et al., 2010). However, projections following a baseline scenario suggest a significant decline (-25 to -40%) of the forest carbon sink of the EU until 2030 compared to 2010. Using wood for bioenergy results initially in a carbon debt due to reduced storage in forests, which affects the net GHG balance depending on the energy type that is replaced and the time span considered (McKechnie et al., 2011). Including additional bioenergy targets of EU member states has an effect on the development of the European forest carbon sink (and on the carbon stock), which is not accounted for in the EU emission reduction target (Bottcher et al., 2012).

In arable production systems, adapting to climate change by increasing the resilience of crop yields to heat and to rainfall variability would have positive impacts on mitigation by reducing soil erosion, as well as soil organic carbon and nitrogen losses. Improving soil water holding capacity through the addition of crop residues and manure to arable soils, or by adding diversity to the crop rotations, may contribute both to adaptation and to mitigation (Smith and Olesen, 2010). There are also synergies and trade-offs between mitigation and adaptation options for soil tillage, irrigation, and livestock breeding (Smith and Olesen, 2010). Reduced tillage (and no-till) may contribute to both adaptation and mitigation as it tends to reduce soil erosion and runoff (Soane et al., 2012) and fossil-fuel use (Khaledian et al., 2010), while increasing in some situations soil organic carbon stock (Powlson et al., 2011). However, increased N_2 O emission may negate the mitigation effect of reduced tillage (Powlson et al., 2011). Irrigation may enhance soil carbon

sequestration in arable systems (Rosenzweig and Tubiello, 2007; Rosenzweig et al., 2008), but increased irrigation under climate change would increase energy use and may reduce water availability for hydropower (reduced mitigation potential) (Wreford et al., 2010). In intensive livestock systems, warmer conditions in the coming decades might trigger the implementation of enhanced cooling and ventilation in farm buildings (Rosenzweig and Tubiello, 2007), thereby increasing energy use and associated GHG emissions. In grass-based livestock systems, adaptation by adjusting the mean annual animal stocking density to the herbage growth potential (Graux et al., 2012) is *likely* to create a positive feedback on GHG emissions per unit area (Soussana and Luscher, 2007; Soussana et al., 2010).

Land management options may also create synergies and trade-offs between mitigation and adaptation. Careful adaptation of forestry and soil management practices will be required to preserve a continental ecosystem carbon sink in Europe (Schulze et al., 2010) despite the vulnerability of this sink to climatic extremes (Ciais et al., 2005) and first signs of carbon sink saturation in European forest biomass (Nabuurs et al., 2013). In areas that are vulnerable to extreme events (e.g., fires, storms, droughts) or with high water demand, the development of bioenergy production from energy crops and from agricultural residues (Fischer, G. et al., 2010; De Wit et al., 2011) could further increase demands on adaptation (Wreford et al., 2010). Conversely, increased demands on mitigation could be induced by the potential expansion of agriculture at high latitudes, which may release large amounts of carbon and nitrogen from organic soils (Rosenzweig and Tubiello, 2007).

23.8.3. Social and Health Impacts

Significant research has been undertaken since AR4 on the health cobenefits of mitigation policies (see Chapter 11 and WGIII AR5 Chapters 7, 8, 9). Several assessments have quantified benefits in terms of lives saved by reducing particulate air pollution. Policies that improve health from changes in transport and energy can be said to have a general benefit to population health and resilience (Haines et al., 2009a,b).

Changes to housing and energy policies also have indirect implications for human health. Research on the benefits of various housing options (including retrofitting) has been intensively addressed in the context of low-energy, healthy, and sustainable housing (see WGIII AR5 Chapters 9, 12).

23.8.4. Environmental Quality and Biological Conservation

There are several conservation management approaches that can address mitigation, adaptation, and biodiversity objectives (Lal et al., 2011). Some infrastructure adaptation strategies—such as desalinization, sea defenses, and flood control infrastructure—may have negative effects on both mitigation and biodiversity. However, approaches, such as forest conservation and urban green space (Section 23.7.4) have multiple benefits and potentially significant effects. There has been relatively little research about the impacts of future land use demand for bioenergy production, food production, and urbanization on nature conservation.

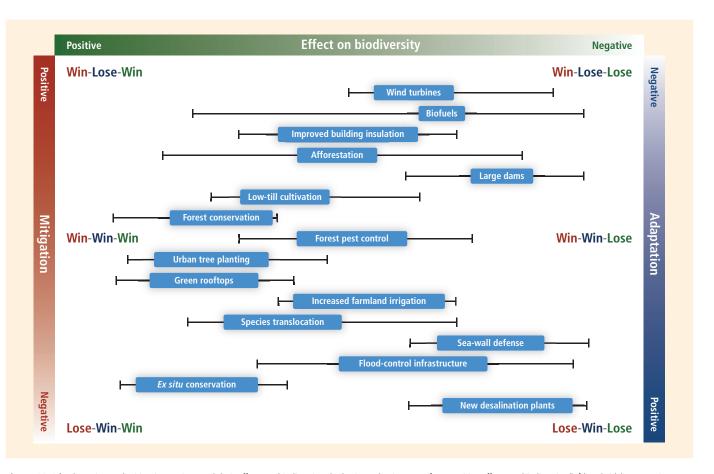


Figure 23-6 | Adaptation and mitigation options and their effects on biodiversity. The horizontal axis ranges from positive effects on biodiversity (lefthand side) to negative effects (righthand side). Each mitigation/adaptation option is located on the biodiversity effect axis (solid bars), including an estimate of the uncertainties associated with the assessment (error bars). The various options are given vertically with mitigation at the top and adaptation at the bottom. Options located toward the center of the vertical axis have benefits for both mitigation and adaptation. Thus, options located at the center left of the figure have benefits for mitigation, adaptation, and biodiversity and hence are labeled as win-win-win. Other combinations of benefits and dis-benefits are labeled accordingly, for example, win-lose-win, lose-win-lose, etc. Based on Paterson et al., 2008.

Figure 23-6 (Paterson et al., 2008) summarizes the evidence regarding mitigation and adaptation options on biodiversity assessed from the literature. The figure shows that the options that come closest to being win-win-win are green rooftops, urban tree planting, forest conservation, and low-till cultivation. Other options with clear benefits are afforestation, forest pest control, increased farmland irrigation, and species translocation.

23.9. Synthesis of Key Findings

23.9.1. Key Vulnerabilities

Climate change will have adverse impacts in nearly all sectors and across all sub-regions. Table 23-4 describes the range of impacts projected in 2050 on infrastructure, settlements, environmental quality, and the health and welfare of the European population. The projected impacts of climate change on ecosystem services (including food production) are described in Box 23-1. A key finding is that all sub-regions are vulnerable to some impacts from climate change but these impacts differ significantly in type between the sub-regions. Impacts in neighboring regions (inter-regional) may also redistribute economic activities across the European landscape. The sectors most likely to be affected by climate

change, and therefore with implications for economic activity and population movement (changes in employment opportunities), include tourism (Section 23.3.6), agriculture (Section 23.4.1), and forestry (Section 23.4.4).

The majority of published assessments are based on climate projections in the range of 1°C to 4°C global mean temperature per century. Under these scenarios, regions in Europe may experience higher rates of warming (in the range 1°C to 4°C per century), due to climate variability (Jacob et al., 2013). Limited evidence exists on the potential impacts in Europe under very high rates of warming (>4°C above preindustrial levels) but these would lead to a large increase in coastal flood risk as well as impacts on global cereal yields and other effects on the global economy (Section 19.5.1).

Many key vulnerabilities are already well known since the AR4, but some new vulnerabilities are emerging based on the evidence reviewed in this report. The policy/governance context in Europe is extremely important in determining (reducing or exacerbating) key vulnerabilities since Europe is a highly regulated region. Further, vulnerability will be strongly affected by changes in the non-climate drivers of change (e.g., economic, social protection measures, governance, technological drivers).

Table 23-4 Assessment of climate change impacts by sub-region by 2050, assuming a medium emissions scenario and no planned adaptation. Impacts assume economic development, including land use change. Impacts are assessed for the whole sub-region, although differences in impact within sub-regions are estimated for some impacts.

		Southern	Atlantic	Continental	Alpine	Northern	Sections
Energy	Wind energy	a a	Attantic	Continental	Арте	Northern	23.3.4
Litergy	production		\Rightarrow	→	→	<u> </u>	_
	Hydropower generation		\	\	b	\rightarrow	
	Thermal power production	\Rightarrow	→	→	7	→	23.3.4, 8.2.3.2
	Energy consumption (net annual change)	<i>→</i>	→	\	\	\	23.3.4, 23.8.1
Transport	Road accidents ^c	\	→	→	₹	⇉	23.3.3
	Rail delays (weather-related)	?	₹ d	?	?		23.3.3, 8.3.3.6
	Load factor of inland ships	?	\Rightarrow	\Rightarrow	?	?	23.3.3
	Transport time and cost in ocean routes	?	?	→	?	\	23.3.3, 18.3.3.3.5
Settlements	River flood damages	→	<	<	→	→	23.3.1
	Coastal flood damages	<u> </u>	→	→	N/A	<u> </u>	
Tourism	Length of ski season	?	?	\	\Rightarrow	\	23.3.6, 3.5.7
Human health	Heat wave mortality and morbidity ^e	→			→		23.5.1
	Food-borne disease ^e	→			→		
Social and cultural impacts	Social costs of floods	<u> </u>	<	<	→		23.5.3
	Damage to cultural buildings	<	<i>→</i>	<i>→</i>	<i>→</i>		23.5.4
	Loss of cultural landscapes	?			→		
Environmental quality	Air quality (ozone background levels)	<	<	<	?	<	23.6.1
	Air quality (particulates)	<	<	<	?	<	1
	Water quality	\	→	→	→	→	23.6.3
Increa No cha Decrea	ange	A range fron	n no change to increasing n no change to decreasin n increasing to decreasing	g \Rightarrow	Red arrows n	mean a "beneficial chan neans a "harmful chang relevant literature foun	e"

^aSimulations have been performed, but mostly for the period after 2070.

Extreme events affect multiple sectors and have the potential to cause systemic impacts from secondary effects (Chapter 19). Past events indicate the vulnerability of transport, energy, agriculture, water resources, and health systems. Resilience to very extreme events varies by sector, and by country (Pitt, 2008; Ludwig et al., 2011; Ulbrich et al., 2012). Extreme

events (heat waves and droughts) have had significant impacts on populations as well as multiple economic sectors (Table 23-1), and resilience to future heat waves has been addressed only within some sectors. However, there is surprisingly little evidence regarding the impacts of major extreme events (e.g., Russian heat wave of 2010) and

^bThe increasing trend is for Norway.

^cThe decreasing trends refers mainly to the number of severe accidents.

Impacts have been studied and quantified for UK only. The increasing trend stands for summer delays and the decreasing trends for winter delays.

elmpacts shown with respect to future world without climate change.

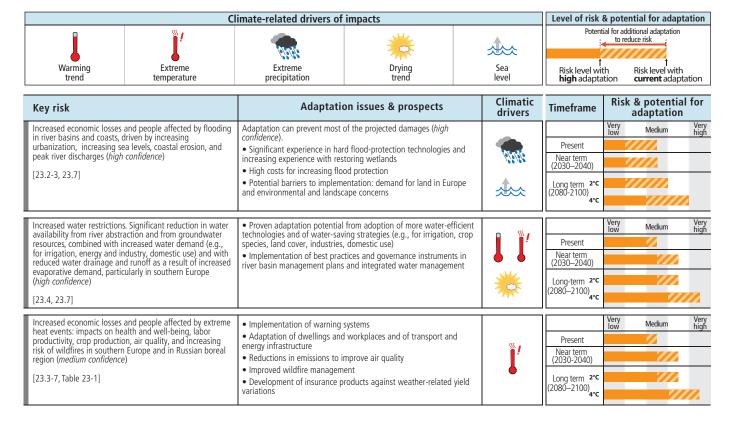
23

Chapter 23 Europe

on responses implemented post-event to increase resilience. Future vulnerability will also be strongly affected by cross-sectoral (indirect) interactions, for example, flooding-ecosystems, agriculture-species, agriculture-cultural landscapes, and so on.

Climate change is likely to have significant impacts on future water availability, and the increased risks of water restrictions in Southern, Central, and Atlantic sub-regions. Studies indicate a significant reduction in water availability from river abstraction and from groundwater resources, combined to increased demands from a range of sectors (irrigation, energy and industry, domestic use) and to reduced water drainage and runoff (as a result of increased evaporative demand) (Ludwig et al., 2011).

Climate change will affect rural landscapes by modifying relative land values, and hence competition, between different land uses (Smith et al., 2010). This will occur directly, for example, through changes in the productivity of crops and trees (Section 23.4), and indirectly through climate change impacts on the global supply of land-based commodities and their movement through international trade (Section 23.9.2).


Climate change will have a range of impacts in different European subregions. The adaptive capacity of populations is likely to vary significantly within Europe. Adaptive capacity indicators have been developed based on future changes in socioeconomic indicators and projections (Metzger et al., 2008; Lung et al., 2012; Acosta et al., 2013). These studies concluded that the Nordic countries have higher adaptive capacity than most of the Southern European countries, with countries around the Mediterranean having a lower capacity than the countries around the Baltic Sea region. Some regions or areas are particularly vulnerable to climate change:

- Populations and infrastructure in coastal regions are likely to be adversely affected by sea level rise, particularly after mid-century (Sections 23.3.1, 23.5.3).
- Urban areas are also vulnerable to weather extremes owing to high density of people and built infrastructure (Sections 23.3, 23.5.1).
- Owing to high impact of climate change on natural hazard, and water and snow resources, and the lack of migration possibilities for plant species, mountain regions concentrate vulnerabilities in infrastructure for transport and energy sectors, as well as for tourism, agriculture, and biodiversity.
- The Mediterranean region will suffer multiple stresses and systemic failures due to climate changes. Changes in species composition, increase of alien species, habitat losses, and degradation both in land and sea together with agricultural and forests production losses due to increasing heat waves and droughts exacerbated also by the competition for water will increase vulnerability (Ulbrich et al., 2012).

The following risks have emerged from observations of climate sensitivity and observed adaptation:

 There is new evidence to suggest that arable crop yields and production may be more vulnerable as a result of increasing climate

Table 23-5 | Key risks from climate change in Europe and the potential for reducing risk through mitigation and adaptation. Risk levels are presented in three timeframes: the present, near-term (2030–2040), and longer term (2080–2100). For each timeframe, risk levels are estimated for a continuation of current adaptation and for a hypothetical highly adapted state. For a given key risk, change in risk level through time and across magnitudes of climate change is illustrated, but because the assessment considers potential impacts on different physical, biological, and human systems, risk levels should not necessarily be used to evaluate relative risk across key risks, sectors, or regions. Key risks were identified based on assessment of the literature and expert judgment.

variability. This will limit the potential poleward expansion of agricultural production. Limits to genetic progress to adapt are increasingly reported.

- New evidence has emerged regarding implications during summer on inland waterways (decreased access) and long-range ocean transport (increased access).
- Terrestrial and freshwater species are vulnerable from climate change shifts in habitats. There is new evidence that species cannot populate new habitat due to habitat fragmentation (urbanization). Observed migration rates are less than that assumed in modeling studies. There are legal barriers to introducing new species (e.g., forest species in France). New evidence reveals that phenological mismatch will cause additional adverse effects on some species.
- A positive (and emerging) effect that may reduce vulnerability is that
 many European governments (and individual cities) have become
 aware of the need to adapt to climate change and so are developing
 and/or implementing adaptation strategies and measures.

Additional risks have emerged from the assessed literature:

- Increased summer energy demand, especially in Southern Europe, requires additional power generation capacity (underutilized during the rest of the year), entailing higher supply costs.
- Housing will be affected, with increased overheating under no adaptation and damage from subsidence and flooding. Passive cooling measures alone are unlikely to be sufficient to address adaptation in all regions and types of buildings. Retrofitting current housing stock will be expensive.
- The vulnerability of cultural heritage, including monuments/buildings and cultural landscapes, is an emerging concern. Some cultural landscapes will disappear. Grape production is highly sensitive to climate, but production (of grape varieties) is strongly culturally dependent and adaptation is potentially limited by the regulatory context.
- There is strong evidence that climate change will increase the
 distribution and seasonal activity of pests and diseases, and limited
 evidence that such effects are already occurring. Increased threats
 to plant and animal health are noted. Public policies are in place
 to reduce pesticide use in agriculture use and antibiotics in livestock,
 and this will increase vulnerability to the impact of climate change
 on agriculture and livestock production.
- Lack of institutional frameworks is a major barrier to adaptation governance, in particular, the systematic failure in land use planning policy to account for climate change.

23.9.2. Climate Change Impacts Outside Europe and Inter-regional Implications

With increasing globalization, the impacts of climate change outside the European region are likely to have implications for countries within the region. For example, the Mediterranean region (Southern Europe and non-European Mediterranean countries) has been considered highly vulnerable to climate change (Navarra, 2013).

Eastern European countries have, in general, lower adaptive capacity than Western or Northern European countries. The high volume of international travel increases Europe's vulnerability to invasive species, including the vectors of human and animal infectious diseases. The transport of animals and animal products has facilitated the spread of animal diseases (Conraths and Mettenleiter, 2011). Important "exotic" vectors that have become established in Europe include the vector *Aedes albopictus* (Becker, 2009; see also Section 23.5.1).

Another inter-regional implication concerns the changes in the location of commercial fish stocks shared between countries. Such changes may render existing international agreements regarding the sharing of yield from these stocks obsolete, giving rise to international disputes (Arnason, 2012). For instance, the North Sea mackerel stock has recently been extending westwards beyond the EU jurisdiction into the Exclusive Economic Zones of Iceland and the Faroe Islands, which unilaterally claimed quota for mackerel. Territorial disagreements of this type could increase in the future with climate change.

Although several studies have proposed a role for climate change in increasing migration pressures in low- and middle-income countries in the future, there is little robust information regarding the respective roles of climate change, environmental resource depletion, and weather disasters in future inter-continental population movements. The effect of climate change on external migration flows into Europe is highly uncertain (see Section 12.4.1 for a more complete discussion). Modeling future migration patterns is complex, and so far no robust approaches have been developed.

23.9.3. Effects of Observed Climate Change in Europe

Table 23-6 summarizes the evidence with respect to key indicators in Europe for the detection of a trend and the attribution of that trend to observed changes in climate factors. The attribution of local warming to anthropogenic climate change is less certain (see Chapter 18 for a full discussion).

Further and better quality evidence since 2007 supports the conclusion of AR4 (Alcamo et al., 2007) that climate change is affecting land, freshwater, and marine ecosystems in Europe. Observed warming has caused advancement in the life cycles of many animal groups, including frogs spawning, birds nesting, and the arrival of migrant birds and butterflies (see Chapter 4 and review by Feehan et al., 2009). There is further evidence that observed climate change is already affecting agricultural, forest, and fisheries productivity (see Section 23.4).

The frequency of river flood events, and annual flood and windstorm damages, in Europe have increased over recent decades, but this increase is attributable mainly to increased exposure and the contribution of observed climate change is unclear (*high confidence*, based on *robust evidence*, *high agreement*; SREX Section 4.5.3; Barredo, 2010).

The observed increase in the frequency of hot days and hot nights (*high confidence*) is likely to have increased heat-related health effects in Europe (*medium confidence*), as well as a decrease in cold-related health effects (*medium confidence*; Christidis et al., 2010). Multiple impacts on health, welfare, and economic sectors were observed due to the major heat wave events of 2003 and 2010 in Europe (Table 23-1; see Chapter 18 for discussion on attribution of events).

Table 23-6 | Observed changes in key indicators in ecological and human systems attributable to climate factors.

	Indicator	Change in indicator	Confidence in detection	Confidence in attribution to change in climate factors*	Key references	Section
Bio-physical systems	Glacier retreat	Fast mass loss of 30 Swiss glaciers since the 1980s	High confidence	Medium confidence	Huss (2010)	18.3.1, WGI 10.5
Infrastructure	Storm losses	Increase since 1970s	High confidence	No causal role for climate	Barredo (2010)	23.3.7
	Hail losses	Increase in parts of Germany	Low confidence	Low confidence	Kunz et al. (2009)	23.3.7
	Flood losses	Increasing general trend in economic losses in Europe since 1970s; none in Spain	Medium confidence	No causal role for climate	Barredo (2009); Barredo et al. (2012)	23.3.1
Agriculture, fisheries, forestry, and bioenergy production	C ₃ crop yield	CO ₂ -induced positive contribution to yield since pre-industrial for C ₃ crops	High confidence (high agreement, robust evidence)	High confidence (high agreement, robust evidence)	Amthor (2001); Long et al. (2006); McGrath and Lobell (2011)	7.2.1
	Wheat yield	Stagnation of wheat yields in some countries in recent decades	High confidence	Medium confidence	Brisson et al. (2010); Kristensen et al. (2011); Lobell et al. (2011)	23.4.1
	Phenology— leaf greening	Earlier greening, earlier leaf emergence and fruit set in temperate and boreal climate	High confidence (high agreement, robust evidence)	High confidence (high agreement, robust evidence)	Menzel et al. (2006)	4.4.1.1
	Phytoplankton productivity	Increased phytoplankton productivity in northeast Atlantic, decrease in warmer regions, due to warming trend and hydroclimatic variations	High confidence	Medium confidence	Beaugrand et al. (2002); Edwards and Richardson (2004)	6.3
	Ocean systems	Northward movement of species and increased species richness due to warming trend	High confidence	Medium confidence	Philippart et al. (2011)	6.3
Environmental quality and biodiversity	Biodiversity	Increased number of colonization events by alien plant species in Europe	Medium confidence (high agreement, medium evidence)	Medium confidence	Walther et al. (2009)	4.2.4.6
	Migratory birds	Decline over the period 1990–2000 of species that did not advance their spring migration	Medium confidence (medium agreement, medium evidence)	Medium confidence	Moller et al. (2008)	4.4.1.1
	Tree species	Upward shift in tree line in Europe	Medium evidence (medium agreement, high evidence)	Medium confidence	Gehrig-Fasel et al. (2007); Lenoir et al. (2008)	18.3.2
	Forest fires	Increase in burnt area	High confidence	High confidence (high agreement, robust evidence)	Pereira et al. (2005); Camia and Amatulli (2009); Hoinka et al. (2009); Carvalho et al. (2010); Koutsias et al. (2012); Salis et al. (2013)	23.4.4

^{*}The studies included in this table are those with good evidence of a detection of a long-term trend in the outcome of interest, and where there has been an assessment of the attribution of the trend to an observed change in climate factor. It is not possible to make an attribution to anthropogenic climate change at this scale; see Chapter 18 for a more complete discussion.

23.9.4. Key Knowledge Gaps and Research Needs

There is a clear mismatch between the volume of scientific work on climate change since the AR4 and the insights and understanding required for policy needs, as many categories of impacts are still understudied. Some specific research needs have been identified:

- Little information is available on integrated and cross-sectoral climate change impacts in Europe, as the impact studies typically describe a single sector (see Sections 23.3-6). This also includes a lack of information on cross-sector vulnerabilities, and the indirect effects of climate change impacts and adaptation responses. This is a major barrier in developing successful evidence-based adaptation strategies that are cost-effective.
- Climate change impact models are difficult to validate (Sections 23.3-6); proper testing of the characteristics of baseline impact estimates against baseline information and data would improve their reliability, or the development of alternative methods where baseline data are not available.
- There is little knowledge on co-benefits and unintended consequences of adaptation options across a range of sectors (Sections 23.3-6).

- There is a need to better monitor and evaluate local and national adaptation and mitigation responses to climate change, in both public and private sectors (Section 23.7; Box 23-3). This includes policies and strategies—as well as the effectiveness of individual adaptation measures. Evaluation of adaptation strategies, over a range of time scales, would better support decision making. Although some means for reporting of national actions exist in Europe (e.g., EU Climate-ADAPT), there is no consistent method of monitoring or a mechanism for information exchange (Section 23.7).
- There are now more economic methods and tools available for the
 costing and valuation of specific adaptation options, in particular
 for flood defenses, water, energy, and agriculture sectors (Section
 23.7.6). However, for other sectors—such as biodiversity, business
 and industry, and population health costs—cost estimates are still
 lacking or incomplete. The usefulness of this costing information
 in decision making needs to be evaluated and research can be
 undertaken to make economic evaluation more relevant to decision
 making.
- The need for local climate information to inform decision making also needs to be evaluated.

- Further research is needed on the effects of climate change on critical infrastructure, including transport, water and energy supplies, and health services (Section 23.5.2).
- Further research is needed on the role of governance in adaptation (local and national institutions) with respect to implementation of measures in the urban environment, including flood defenses, overheating, and urban planning.
- The impacts from high end scenarios of climate change (>4°C global average warming, with higher temperature change in Europe) are
- not yet known. Such scenarios have only recently become available, and related impact studies still need to be undertaken for Europe.
- More study of the implications for rural development would inform policy in this area (Section 23.7.5). There is also a lack of information on the resilience of cultural landscapes and communities, and how to manage adaptation, particularly in low-technology (productively marginal) landscapes.
- More research is needed for the medium- and long-term monitoring of forest responses and adaptation to climate change and on the

Frequently Asked Questions

FAQ 23.1 | Will I still be able to live on the coast in Europe?

Coastal areas affected by storm surges will face increased risk both because of the increasing frequency of storms and because of higher sea level. Most of this increase in risk will occur after the middle of this century. Models of the coast line suggest that populations in the northwestern region of Europe are most affected and many countries, including the Netherlands, Germany, France, Belgium, Denmark, Spain, and Italy, will need to strengthen their coastal defenses. Some countries have already raised their coastal defense standards. The combination of raised sea defenses and coastal erosion may lead to narrower coastal zones in the North Sea, the Iberian coast, and the Bay of Biscay. Adapting dwellings and commercial buildings to occasional flooding is another response to climate change. But though adapting buildings in coastal communities and upgrading coastal defenses can significantly reduce adverse impacts of sea level rise and storm surges, they cannot eliminate these risks, especially as sea levels will continue to rise over time. In some locations, "managed retreat" is likely to become a necessary response.

Frequently Asked Questions

FAQ 23.2 | Will climate change introduce new infectious diseases into Europe?

Many factors play a role in the introduction of infectious diseases into new areas. Factors that determine whether a disease changes distribution include: importation from international travel of people, vectors or hosts (insects, agricultural products), changes in vector or host susceptibility, drug resistance, and environmental changes, such as land use change or climate change. One area of concern that has gained attention is the potential for climate change to facilitate the spread of tropical diseases, such as malaria, into Europe. Malaria was once endemic in Europe. Even though its mosquito vectors are still present and international travel introduces fresh cases, malaria has not become established in Europe because infected people are quickly detected and treated. Maintaining good health surveillance and good health systems are therefore essential to prevent diseases from spreading. When an outbreak has occurred (i.e., the introduction of a new disease) determining the causes is often difficult. It is likely that a combination of factors will be important. A suitable climate is a necessary but not a sufficient factor for the introduction of new infectious diseases.

Frequently Asked Questions

FAQ 23.3 | Will Europe need to import more food because of climate change?

Europe is one of the world's largest and most productive suppliers of food, but also imports large amounts of some agricultural commodities. A reduction in crop yields, particularly wheat in Southern Europe, is expected under future climate scenarios. A shift in cultivation areas of high-value crops, such as grapes for wine, may also occur. Loss of food production may be compensated by increases in other European sub-regions. However, if the capacity of the European food production system to sustain climate shock events is exceeded, the region would require exceptional food importation.

predictive modeling of wildfire distribution to better address adaptation and planning policies. There is also a lack of information on the impact of climate changes and climate extremes on carbon sequestration potential of agricultural and forestry systems (Section 23 4 4)

- More research is needed on impacts of climate change on transport, especially on the vulnerability of road and rail infrastructure, and on the contribution of climatic and non-climatic parameters in the vulnerability of air transport (e.g., changes in air traffic volumes, airport capacities, air traffic demand, weather at the airports of origin, intermediate and final destination; Section 23.3.3).
- Improved monitoring of droughts is needed to support the management of crop production (Section 23.4). Remote sensing could be complemented by field experiments that assess the combined effects of elevated CO₂ and extreme heat and drought on crops and pastures.
- Research is needed on resilience of human populations to extreme events (factors that increase resilience), including responses to flood and heat wave risks. Research is also needed on how adaptation policies may increase or reduce social inequalities (Section 23.5).
- Improved risk models need to be developed for vector-borne disease (human and animal diseases) to support health planning and surveillance (Sections 23.4.2, 23.5.1).

A major barrier to research is lack of access to data, which is variable across regions and countries (especially with respect to socioeconomic data, climate data, forestry, and routine health data). There is a need for long-term monitoring of environmental and social indicators and to ensure open access to data for long-term and sustainable research programs. Cross-regional cooperation could also ensure compatibility and consistency of parameters across the European region.

References

- Aaheim, A., H. Amundsen, T. Dokken, and T. Wei, 2012: Impacts and adaptation to climate change in European economies. Global Environmental Change, 22(4), 959-968.
- Aakre, S. and D.T.G. Rübbelke, 2010: Adaptation to climate change in the European Union: efficiency versus equity considerations. *Environmental Policy and Governance*, 20(3), 159-179.
- Aakre, S., I. Banaszak, R. Mechler, D. Rübbelke, A. Wreford, and H. Kalirai, 2010: Financial adaptation to disaster risk in the European Union: identifying roles for the public sector. *Mitigation and Adaptation Strategies for Global Change*, 15(7), 721-736.
- ABI, 2009: The Financial Risk of Climate Change: Examining the Financial Implications of Climate Change Using Climate Models and Insurance Catastrophe Risk Models [Dailey, P., M. Huddleston, S. Brown, and D. Fasking (eds.)]. ABI Research Paper No. 19, Report by AIR Worldwide Corporation and the Met Office Hadley Centre for the Association of British Insurers (ABI), ABI, London, UK, 107 pp.
- Acevedo, P., F. Ruiz-Fons, R. Estrada, A.L. Márquez, M.A. Miranda, C. Gortázar, and J. Lucientes, 2010: A broad assessment of factors in determining *Culicoides imicola* abundance: modelling the present and forecasting its future in climate change scenarios. *PloS One*, 5(12), e14236, doi:10.1371/journal.pone.0014236.
- ACIA, 2005: Arctic Climate Impact Assessment. ACIA Scientific Report, Cambridge University Press, New York, NY, USA, 1042 pp., www.acia.uaf.edu/pages/scientific.html.
- Acosta, L., R.J.T. Klein, P. Reitsma, M.J. Metzger, M.D.A. Rounsevell, R. Leemans, and D. Schroter, 2013: A spatially explicit scenario-driven model of adaptive capacity to global change in Europe. *Global Environmental Change*, 23(5), 1211-1224, doi.org/10.1016/j.gloenvcha.2013.03.008.

Aerts, J., T. Sprong, B. Bannink, J. Bessembinder, E. Koomen, C. Jacobs, N. van der Hoeven, D. Huitema, S. van 't Klooster, J. Veraart, A. Walraven, S.N. Jonkman, B. Maaskant, L.M. Bouwer, K. de Bruijn, E. Oosterveld, H. Schuurman, K. Peters, W. Ottevanger, W. Immerzeel, P. Droogers, J. Kwadijk, J. Kind, L. Voogt, H. van der Klis, R. Dellink, F. Affolter, P. Bubeck, M. van der Meulen, G. de Lange, B. Bregman, H. van den Brink, H. Buiteveld, S. Drijfhout, A. Feijt, W. Hazeleger, B. van den Hurk, C. Katsman, A. Kattenberg, G. Lenderink, E. Meijgaard, P. Siegmund, M. de Wit, M. Naples, E. van Velzen, and J. van Zetten, 2008: Aandacht voor Veiligheid [Aerts, J., T. Sprong, and B. Bannink (eds.)]. Leven met Water, Klimaat voor Ruimte, DG Water, Netherlands, 198 pp. (in Dutch).

- **Affolter**, P., U. Büntgen, J. Esper, A. Rigling, P. Weber, J. Luterbacher, and D. Frank, 2010: Inner Alpine conifer response to 20th century drought swings. *European Journal of Forest Research*, **129**, 289-298.
- AGRESTE, 2011: Agreste Infos Rapides-Grandes Cultures et Fourrages, N°6/7: Les Prairies Vues par ISOP en Septembre 2011 [Cassagne, J.P. (ed.)]. Ministère de l'Agriculture, de l'Alimentation, de la Pêche, de la Ruralité et de l'Aménagement du Territoire, Secrétariat Général, Montreuil, France, 4 pp. (in French).
- Airoldi, L. and M.W. Bec, 2007: Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology Annual Review, 45, 345-405.
- Albertson, K., J. Aylen, G. Cavan, and J. McMorrow, 2010: Climate change and the future occurrence of moorland wildfires in the Peak District of the UK. Climate Research, 45, 105-118.
- Albrecht, F., T. Wahl, J. Jensen, and R. Weisse, 2011: Determining sea level change in the German Bight. *Ocean Dynamics*, **61(12)**, 2037-2050.
- Alcamo, J., J.M. Moreno, B. Novaky, M. Bindi, R. Corobov, R.J.N. Devoy, C. Giannakopoulos, E. Martin, J.E. Olesen, and A. Shvidenko, 2007: Europe. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK and New Yoork, NY, USA, pp. 541-580.
- Alkemade, R., M. Bakkenes, and B. Eickhout, 2011: Towards a general relationship between climate change and biodiversity: an example for plant species in Europe. *Regional Environmental Change*, 11(1 Suppl.), S143-S150.
- Allen, C.D., A.K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D.D. Breshears, E.H. Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J. Lim, G. Allard, S.W. Running, A. Semerci, and N. Cobb, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684.
- Amelung, B. and A. Moreno, 2009: Impacts of Climate Change in Tourism in Europe. PESETA-Tourism Study. EUR 24114 EN – 2009, JRC Scientific and Technical Reports, Projection of Economic Impacts of Climate Change in Sectors of the European Union (PESETA) Study, Joint Research Centre (JRC) – Institute for Prospective Technological Studies of the European Communities (EC), Publications Office of the European Union, Luxembourg, Luxembourg, 44 pp.
- Amelung, B. and A. Moreno, 2012: Costing the impact of climate change on tourism in Europe: results of the PESETA project. *Climatic Change*, 112(1), 83-100.
- Amelung, B., S. Nicholls, and D. Viner, 2007: Implications of global climate change for tourism flows and seasonality. *Journal of Travel Research*, 45, 285-296.
- Amstislavski, P., L. Zubov, H. Chen, P. Ceccato, J.F. Pekel, and I.J. Weedon, 2013: Effects of increase in temperature and open water on transmigration and access to health care by the Nenets reindeer herders in northern Russia. *International Journal of Circumpolar Health*, 72(Suppl. 1), 21183, doi:10.3402/ijch.v72i0.21183.
- Amthor, J.S., 2001: Effects of atmospheric CO₂ concentration on wheat yield: review of results from experiments using various approaches to control CO₂ concentration. Field Crops Research, 73(1), 1-34.
- Analitis, A., K. Katsouyanni, A. Biggeri, M. Baccini, B. Forsberg, L. Bisanti, U. Kirchmayer, F. Ballester, E. Cadum, P.G. Goodman, A. Hojs, J. Sunyer, P. Tiittanen, and P. Michelozzi, 2008: Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. *American Journal of Epidemiology*, 168(12), 1397-1408.
- Analitis, A., I. Georgiadis, and K. Katsouyanni, 2012: Forest fires are associated with elevated mortality in a dense urban setting. Occupational and Environmental Medicine, 69(3), 158-162.
- Andersen, H.E., B. Kronvang, S. Larsen, C.C. Hoffmann, T.S. Jensen, and E.K. Rasmussen, 2006: Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 365(1-3), 223-237.

- Andersson, A.K. and L. Chapman, 2011a: The impact of climate change in winter road maintenance and traffic accidents in West Midlands, UK. Accident Analysis and Prevention, 43(1), 284-289.
- Andersson, A.K. and L. Chapman, 2011b: The use of a temporal analogue to predict future traffic accidents and winter road conditions in Sweden. *Meteorological Applications*, 18, 125-136.
- André, G., B. Engel, P.B.M. Berentsen, T. Vellinga, and A.G.J.M. Oude Lansink, 2011: Quantifying the effect of heat stress on daily milk yield and monitoring dynamic changes using an adaptive dynamic model. *Journal of Dairy Science*, 94(9), 4502-4513.
- AQEG, 2007: Air Quality and Climate Change: A UK Perspective. Third Report of the Air Quality Expert Group (AQEG), prepared for the UK Department for Environment, Food and Rural Affairs (DEFRA), Scottish Executive, Welsh Assembly Government, and Department of the Environment in Northern Ireland, DEFRA, London, UK, 272 pp.
- Aragòn, P. and J.M. Lobo, 2012: Predicted effect of climate change on the invasibility and distribution of the western corn root-worm. *Agricultural and Forest Entomology*, 14, 13-18.
- Araújo, M.B., W. Thuiller, and R.G. Pearson, 2006: Climate warming and the decline of amphibians and reptiles in Europe. *Journal of Biogeography*, 33, 1712-1728.
- Araújo, M.B., D. Alagador, M. Cabeza, D. Nogués-Bravo, and W. Thuiller, 2011: Climate change threatens European conservation areas. *Ecology Letters*, 14, 484-492.
- Arca, B., G. Pellizzaro, P. Duce, M. Salis, V. Bacciu, D. Spano, A. Ager, and E. Scoccimarro, 2012: Potential changes in fire probability and severity under climate change scenarios in Mediterranean areas. In: *Modelling Fire Behaviour and Risk* [Spano, D., V. Bacciu, M. Salis, and C. Sirca (eds.)]. Nuova Stampa Color, Muros, Italy, pp. 92-98.
- Armstrong, B.G., Z. Chalab, B. Fenn, S. Hajat, S. Kovats, A. Milojevic, and P. Wilkinson, 2011: Association of mortality with high temperatures in a temperate climate: England and Wales. *Journal of Epidemology and Community Health*, 65, 340-345.
- Arnason, R., 2012: Global warming: new challenges for the common fisheries policy? Ocean & Coastal Management, 70, 4-9.
- Arnell, N., 2011: Incorporating climate change into water resources planning in England and Wales. *Journal of the American Water Resources Association*, 47(3), 541-549.
- Artmann, N., D. Gyalistras, H. Manz, and P. Heiselberg, 2008: Impact of climate warming on passive night cooling potential. *Building Research & Information*, 36(2), 111-128.
- ARUP, 2011: Analysis of How Land Use Planning Decisions Affect Vulnerability to Climate Risks. Final Report. Commissioned by the Adaptation Sub-Committee of the Committee on Climate Change, Ove Arup and Partners Ltd., London, UK, 132 pp.
- Arzt, J., W.R. White, B.V. Thomsen, and C.C. Brown, 2010: Agricultural diseases on the move early in the third millennium. *Veterinary Pathology*, 47(1), 15-27.
- Åström, D., B. Forsberg, and J. Rocklöv, 2011: Heat wave impact on morbidity and mortality in the elderly population: a review of recent studies. *Maturitas*, 69(2), 99-105.
- Äström, D., H. Orru, J. Rocklöv, G. Strandberg, K.L. Ebi, and B. Forsberg, 2013: Heatrelated respiratory hospital admissions in Europe in a changing climate: a health impact assesssment. *BMJ Open*, 3, e001842, doi:10.1136/bmjopen-2012-001842.
- Avnery, S., D.L. Mauzerall, J. Liu, and L.W. Horowitz, 2011a: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45, 2284-2296.
- Avnery, S., D.L. Mauzerall, J. Liu, and L.W. Horowitz, 2011b: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution. *Atmospheric Environment*, **45**, 2297-2309.
- BACC Author Team, 2008: Assessment of Climate Change for the Baltic Sea Basin. Springer-Verlag, Berlin Heidelberg, Germany, 474 pp.
- Baccini, M., T. Kosatsky, A. Analitis, H.R. Anderson, M. D'Ovidio, B. Menne, P. Michelozzi, and A. Biggeri, 2011: Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. *Journal of Epidemiology and Community Health*, 65(1), 64-70.
- Ballester, J., J. Robine, F.R. Herrmann, and X. Rodo, 2011: Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. *Nature Communications*, 2(1), 358, doi:10.1038/ncomms1360.

Bangash, R.F., A. Passuello, M. Sanchez-Canales, M. Terrado, A. Lopez, F.J. Elorza, G. Ziv, V. Acuna, and M. Schuhmacher, 2013: Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. The Science of the Total Environment, 458-460, 246-255.

- Bank of Greece, 2011: *The Environmental, Economic and Social Impacts of Climate Change in Greece.* Climate Change Impacts Study Committee, Bank of Greece, Economic Research Department Secretariat, Athens, Greece, 470 pp.
- Barredo, J.I., 2009: Normalised flood losses in Europe: 1970-2006. *Natural Hazards and Earth System Sciences*, **9(1)**, 97-104.
- **Barredo**, J.I., 2010: No upward trend in normalised windstorm losses in Europe: 1970-2008. *Natural Hazards and Earth System Sciences*, **10(1)**, 97-104.
- Barredo, J.I., D. Saurí, and M.C. Llasat, 2012: Assessing trends in insured losses from floods in Spain 1971-2008. *Natural Hazards and Earth System Science*, **12(5)**, 1723-1729.
- Barriopedro, D., E.M. Fischer, J. Luterbacher, R.M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: redrawing the temperature record map of Europe. *Science*, **332(6026)**, 220-224.
- Barstad, I., A. Sorteberg, and M. Dos-Santos, 2012: Present and future offshore wind power potential in Northern Europe based on downscaled global climate runs with adjusted SST and sea ice cover. *Renewable Energy*, 44, 398-405.
- **Bastian**, O., 2013: The role of biodiversity in supporting ecosystem services in Natura 2000 sites. *Ecological Indicators*, **24**, 12-22.
- **Bastola**, S., C. Murphy, and J. Sweeney, 2011: The sensitivity of fluvial flood risk in Irish catchments to the range of IPCC AR4 climate change scenarios. *Science of the Total Environment*, **409(24)**, 5403-5415.
- **Battaglini**, A., G. Barbeau, M. Bindi, and F.W. Badeck, 2009: European winegrowers' perceptions of climate change impact and options for adaptation. *Regional Environmental Change*, **9(2)**, 61-73.
- Beaugrand, G. and R.R. Kirby, 2010: Climate, plankton and cod. *Global Change Biology*, **16(4)**, 1268-1280.
- **Beaugrand**, G. and P.C. Reid, 2012: Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. *ICES Journal of Marine Science*, **69(9)**, 1549-1562.
- Beaugrand, G., P. Reid, F. Ibañez, J. Lindley, and M. Edwards, 2002: Reorganization of North Atlantic marine copepod biodiversity and climate. *Science*, 296(5573), 1692-1694.
- **Beaugrand**, G., M. Edwards, and L. Legendre, 2010: Marine biodiversity, ecosystem functioning, and carbon cycles. *Proceedings of the National Academy of Sciences of the United States of America*, **107(22)**, 10120-10124.
- Becker, N., 2009: The impact of globalization and climate change on the development of mosquitoes and mosquito-borne diseases in Central Europe [Die Rolle der Globalisierung und Klimaveränderung auf die Entwicklung von Stechmücken und von ihnen übertragenen Krankheiten in Zentral-Europa]. Umweltwissenschaften und Schadstoff-Forschung, 21(2), 212-222.
- **Belkin**, I.M., 2009: Rapid warming of large marine ecosystems. *Progress in Oceanography*, **81**, 207-213.
- Benavente, D., P. Brimblecombe, and C.M. Grossi, 2008: Salt weathering and climate change. In: *New Trends in Analytical, Environmental and Cultural Heritage Chemistry* [Colombini, M.P. and L. Tassi (eds.)]. Transworld Research Network, Trivandrum, Kerala, India, pp. 277-286.
- **Beniston**, M., 2007: Entering into the 'greenhouse century': recent record temperatures in Switzerland are comparable to the upper temperature quantiles in a greenhouse climate. *Geophysical Research Letters*, **34(16)**, L16710, doi:10.1029/2007GL030144.
- Beniston, M., D.B. Stephenson, O.B. Christensen, C.A.T. Ferro, C. Frei, S. Goyette, K. Halsnaes, T. Holt, K. Jylhä, B. Koffi, J. Palutikof, R. Schöll, T. Semmler, and K. Woth, 2007: Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change, 81(Suppl. 1), 71-95.
- Berg, P., C. Moseley, and J.O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. *Nature Geoscience*, **6(3)**, 181-185.
- Bertini, G., T. Amoriello, G. Fabbio, and M. Piovosi, 2011: Forest growth and climate change: evidences from the ICP-Forests intensive monitoring in Italy. *Journal* of Biogeosciences and Forestry, 4, 262-267.
- Bett, P.E., H.E. Thornton, and R.T. Clark, 2013: European wind variability over 140 yr. Advances in Science and Research, 10, 51-58.
- Biesbroek, G.R., R.J. Swart, T.R. Carter, C. Cowan, T. Henrichs, H. Mela, M.D. Morecroft, and D. Rey, 2010: Europe adapts to climate change: comparing National Adaptation Strategies. *Global Environmental Change*, 20(3), 440-450.

- Bigler, C., O. Bräker, H. Bugmann, M. Dobbertin, and A. Rigling, 2006: Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. *Ecosystems*, 9(3), 330-343.
- **Bindi**, M. and J.E. Olesen, 2011: The responses of agriculture in Europe to climate change. *Regional Environmental Change*, **11(Suppl. 1)**, 151-158.
- Bittner, M., E.F. Matthies, D. Dalbokova, and B. Menne, 2013: Are European countries prepared for the next big heat-wave? European Journal of Public Health, doi:10.1093/eurpub/ckt121.
- **Björdal**, C.G., 2012: Evaluation of microbial degradation of shipwrecks in the Baltic Sea. *International Biodeterioration & Biodegradation*, **70**, 126-140.
- Blaustein, A.R., S.C. Walls, B.A. Bancroft, J.J. Lawler, C.L. Searle, and S.S. Gervasi, 2010: Direct and indirect effects of climate change on amphibian populations. *Diversity*, 2(2), 281-313.
- Bloom, A., V. Kotroni, and K. Lagouvardos, 2008: Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Natural Hazards and Earth System Sciences, 8(6), 1249-1257.
- Bock, A., T. Sparks, N. Estrella, and A. Menzel, 2011: Changes in the phenology and composition of wine from Franconia, Germany. *Climate Research*, **50**, 69-81.
- Bolte, A., C. Ammer, M. Löf, P. Madsen, G. Nabuurs, P. Schall, P. Spathelf, and J. Rock, 2009: Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473-482.
- Bonazza, A., P. Messina, C. Sabbioni, C.M. Grossi, and P. Brimblecombe, 2009a: Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Science of the Total Environment, 407(6), 2039-2050.
- Bonazza, A., C. Sabbioni, P. Messina, C. Guaraldi, and P. De Nuntiis, 2009b: Climate change impact: mapping thermal stress on Carrara marble in Europe. Science of the Total Environment, 407(15), 4506-4512.
- Bondur, V.G., 2011: Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia. *Izvestiya, Atmospheric and Oceanic Physics*, 47(9), 1039-1048.
- Bormann, H., N. Pinter, and S. Elfert, 2011: Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. *Journal* of Hydrology, 404, 50-66.
- Bosello, F., R.J. Nicholls, J. Richards, R. Roson, and R.S.J. Tol, 2012: Economic impacts of climate change in Europe: sea-level rise. *Climatic Change*, **112(1)**, 63-81.
- Bottcher, H., P.J. Verkerk, M. Gusti, P. Havllk, and G. Grassi, 2012: Projection of the future EU forest CO₂ sink as affected by recent bioenergy policies using two advanced forest management models. *GCB Bioenergy*, 4(6), 773-783.
- Botzen, W.J.W. and J.C.J.M. van den Bergh, 2008: Insurance against climate change and flooding in the Netherlands: present, future, and comparison with other countries. *Risk Analysis*, 28, 413-426.
- Botzen, W.J.W., J.C.J.H. Aerts, and J.C.J.M. van den Bergh, 2009: Willingness of homeowners to mitigate climate risk through insurance. *Ecological Economics*, 68, 2265-2277.
- Botzen, W.J.W., J.C.J.M. van den Bergh, and L.M. Bouwer, 2010a: Climate change and increased risk for the insurance sector: a global perspective and an assessment for the Netherlands. *Natural Hazards*, **52**, 577-598.
- Botzen, W.J.W., L.M. Bouwer, and J.C.J.M. van den Bergh, 2010b: Climate change and hailstorm damage: empirical evidence and implications for agriculture and insurance. *Resource and Energy Economics*, 32(3), 341-362.
- **Bouwer**, L.M., J.E. Vermaat, and J.C.J.H. Aerts, 2008: Regional sensitivities of mean and peak river discharge to climate variability in Europe. *Journal of Geophysical Research*, **113(D19)**, D19103, doi:10.1029/2008JD010301.
- **Bouwer**, L.M., P. Bubeck, and J.C.J.H. Aerts, 2010: Changes in future flood risk due to climate and development in a Dutch polder area. *Global Environmental Change*, **20(3)**, 463-471.
- Boxall, A., A. Hardy, S. Beulke, T. Boucard, L. Burgin, P.D. Falloon, P.M. Haygarth, T. Hutchinson, S. Kovats, G. Leonardi, L.S. Levy, G. Nichols, S.A. Parsons, L. Potts, D. Stone, E. Topp, D.B. Turley, K. Walsh, E.M.H. Wellington, and R.J. Williams, 2009: Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture: *Environmental Health Perspectives*, 117(4), 508-514
- Bradley, B.A., D.M. Blumenthal, D.S. Wilcove, and L.H. Ziska, 2010: Predicting plant invasions in an era of global change. *Trends in Ecology and Evolution*, 25(5), 310-318.
- Branquart, E., K. Verheyen, and J. Latham, 2008: Selection criteria of protected forest areas in Europe: the theory and the real world. *Biological Conservation*, 11(141), 2795-2806.

Breesch, H. and A. Janssens, 2010: Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis. Solar Energy, 84(8), 1453-1467.

- Brijs, T., D. Karlis, and G. Wets, 2008: Studying the effect of weather conditions on daily crash counts using a discrete time-series model. Accident Analysis and Prevention, 40(3), 1180-1190.
- Brimblecombe, P., 2010a: Heritage climatology. In: Climate Change and Cultural Heritage [Lefèvre, R.-A. and C. Sabbioni (eds.)]. Edipuglia, Bari, Italy, pp. 49-56.
- Brimblecombe, P., 2010b: Mapping heritage climatologies. In: Effect of Climate Change on Built Heritage [Bunnik, T., H. de Clercq, R. van Hees, H. Schellen, and L. Schueremans (eds.)]. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege (WTA) Publications, Pfaffenhofen, Germany, pp. 18-30.
- Brimblecombe, P. and C.M. Grossi, 2008: Millennium-long recession of limestone facades in London. *Environmental Geology*, **56(3-4)**, 463-471.
- Brimblecombe, P. and C.M. Grossi, 2009: Millennium-long damage to building materials in London. Science of the Total Environment, 407(4), 1354-1361.
- Brimblecombe, P. and C.M. Grossi, 2010: Potential damage to modern building materials from 21st century air pollution. *Scientific World Journal*, **10**, 116-125.
- Brimblecombe, P., M.C. Grossi, and I. Harris, 2006: Climate change critical to cultural heritage. In: Heritage Weathering and Conservation: Proceedings of the International Heritage, Weathering and Conservation Conference (HWC-2006), 21-24 June 2006, Madrid, Spain – Two Volumes [Fort, R., M. Alvarez de Buergo, M. Gomez-Heras, and C. Vazquez-Calvo (eds.)]. Taylor and Francis, London, UK, pp. 387-393.
- Briner, S., C. Elkin, R. Huber, and A. Gret-Regamy, 2012: Assessing the impacts of economic and climate changes on land-use in mountain regions: spatial dynamic modelling approach. Agriculture, Ecosystems and Environment, 149, 50-63.
- Brisson, N., P. Gate, D. Gouache, G. Charmet, F. Oury, and F. Huard, 2010: Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119(1), 201-212.
- Brohan, P., J.J. Kennedy, I. Harris, S.F.B. Tett, and P.D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. *Journal of Geophysical Research*, 111(D12), D12106, doi:10.1029/ 2005JD006548.
- **Brouwer**, S., T. Rayner, and D. Huitema, 2013: Mainstreaming climate policy: the case of climate adaptation and the implementation of EU water policy. *Environment and Planning C: Government and Policy*, **31(1)**, 134-153.
- Bryson, J., J. Piper, and M. Rounsevell, 2010: Envisioning futures for climate change policy development: scenarios use in European environmental policy institutions. *Environmental Policy and Governance*, 20(5), 283-294.
- Bubeck, P., H. De Moel, L.M. Bouwer, and J.C.J. H. Aerts, 2011: How reliable are projections of future flood damage? *Natural Hazards and Earth System Science*, 11(12), 3293-3306.
- Buestel, D., M. Ropert, J. Prou, and Goulletquer, 2009: History, status and future of oyster culture in France. *Journal of Shellfish Research*, 28(4), 813-820.
- Bujosa, A. and J. Roselló, 2012: Climate change and summer mass tourism: the case of Spanish domestic tourism. Climatic Change, 117(1-2), 363-375.
- Bulkeley, H., 2010: Cities and the governing of climate change. Annual Review of Environment and Resources, 35, 229-253.
- Busch, G., 2006: Future European agricultural landscapes what can we learn from existing quantitative land use scenario studies? *Agriculture, Ecosystems and Environment*, **114(1)**, 121-140.
- Butchart, S.H.M., M. Walpole, B. Collen, A. Van Strien, J.P.W. Scharlemann, R.E.A. Almond, J.E.M. Baillie, B. Bomhard, C. Brown, J. Bruno, K.E. Carpenter, G.M. Carr, J. Chanson, A.M. Chenery, J. Csirke, N.C. Davidson, F. Dentener, M. Foster, A. Galli, J.N. Galloway, P. Genovesi, R.D. Gregory, M. Hockings, V. Kapos, J.-F. Lamarque, F. Leverington, J. Loh, M.A. McGeoch, L. McRae, A. Minasyan, M. Hernández Morcillo, T.E.E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S.N. Stuart, A. Symes, M. Tierney, T.D. Tyrrell, J.-C. Vié, and R. Watson, 2010: Global biodiversity: indicators of recent declines. Science, 328(5982), 1164-1168.
- Butterworth, M.H., M.A. Semenov, A. Barnes, D. Moran, J.S. West, and B.D.L. Fitt, 2010: North-South divide: contrasting impacts of climate change on crop yields in Scotland and England. *Journal of the Royal Society Interface*, 7(42), 123-130.
- Caffarra, A., M. Rinaldi, E. Eccela, V. Rossi, and I. Pertota, 2012: Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems & Environment, 148, 89-101.

- Calanca, P., A. Roesch, J. Karsten, and M. Wild, 2006: Global warming and the summertime evapotranspiration regime of the Alpine region. *Climatic Change*, 79(1-2), 65-78.
- Callaway, R., A.P. Shinn, S.E. Grenfell, J.E. Bron, G. Burnell, E.J. Cook, M. Crumlish, S. Culloty, K. Davidson, R.P. Ellis, K.J. Flynn, C. Fox, D.M. Green, G.C. Hays, A.D. Hughes, E. Johnston, C.D. Lowe, I. Lupatsch, S. Malham, A.F. Mendzil, T. Nickell, T. Pickerell, A.F. Rowley, M.S. Stanley, D.R. Tocher, J.F. Turnbull, G. Webb, E. Wootton, and R.J. Shields, 2012: Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 389-421.
- Camia, A. and G. Amatulli, 2009: Weather factors and fire danger in the Mediterranean. In: Earth Observation of Wildland Fires in Mediterranean Ecosystems [Chuvieco, E. (ed.)]. Springer-Verlag, Berlin Heidelberg, Germany, pp. 71-82.
- Caminade, C., J.M. Medlock, E. Ducheyne, K.M. McIntyre, S. Leach, M. Baylis, and A.P. Morse, 2012: Suitability of European climate for the Asian tiger mosquito Aedes Albopictus: recent trends and future scenarios. Journal of the Royal Society Interface, 9(75), 2707-2717.
- Camps, J.O. and M.C. Ramos, 2012: Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. *International Journal of Biometeorology*, 56(5), 853-864.
- Cantarel, A.M., J.M.G. Bloor, and J. Soussana, 2013: Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. *Journal of Vegetation Science*, 24(1), 113-126.
- Canu, D., C. Solidoro, G. Cossarini, and F. Giorgi, 2010: Effect of global change on bivalve rearing activity and the need for adaptive management. *Climate Research*, 42, 13-26.
- Carmichael, C., G. Bickler, R.S. Kovats, D. Pencheon, V. Murray, C. West, and Y. Doyle, 2013: Overheating and hospitals: what do we know? *Journal of Hospital Administration*, **2(1)**, doi:10.5430/jha.v2n1p1.
- Carter, J.G., 2011: Climate change adaptation in European cities. Current Opinion in Environmental Sustainability, 3(3), 193-198.
- Carvalho, A., A. Monteiro, M. Flannigan, S. Solman, A.I. Miranda, and C. Borrego, 2011: Forest fires in a changing climate and their impacts on air quality. *Atmospheric Environment*, 45(31), 5545-5553.
- Casalegno, S., G. Amatulli, A. Bastrup-Birk, and T. Houston, 2007: Modelling current and future distribution of European forest categories. In: Proceedings of the 6th European Conference on Ecological Modelling (ECEM '07): "Challenges for Ecological Modelling in a Changing World: Global Changes, Sustainability and Ecosystem Based Management," 27-30, November 2007, Trieste, Italy. ECEM '07 Secretariat, Istituto Nazionale di Oceanografia di Geofisica Sperimentale (OGS), Trieste Italy, pp. 1-2.
- Castebrunet, H., N. Eckert, and G. Giraud, 2012: Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. *Climate of the Past*, **8(2)**, 855-875.
- Castellari, S., 2009: Climate change, impacts and adaptation strategies in the Alpine space: some results from the INTERREG III B Project ClimChAlp. In: Proceedings of the International Conference "Mountains as Early Indicators of Climate Change," 17-18 Aprile 2008, Padova, Italy. United Nations Environment Programme (UNEP) Regional Office for Europe Vienna, Vienna, Austria, pp. 81-91.
- CEA, 2007: Reducing the Social and Economic Impact of Climate Change and Natural Catastrophes: Insurance Solutions and Public-Private Partnerships. Report prepared by CEA, Insurers of Europe, the European Insurance and Reinsurance Federation (now Insurance Europe), Brussels, Belgium, 47 pp.
- CEA, 2009: Tackling Climate Change: The Vital Contribution of Insurers. Report prepared by CEA, Insurers of Europe, the European Insurance and Reinsurance Federation (now Insurance Europe), Brussels, Belgium, 63 pp.
- Cellamare, M., M. Leitao, M. Coste, A. Dutartre, and J. Haury, 2010: Tropical phytoplankton taxa in Aquitaine lakes (France). *Hydrobiologia*, 639(1), 129-145.
- Charles, E., D. Idier, J. Thiebot, G. Le Cozannet, R. Pedreros, F. Ardhuin, and S. Planton, 2012: Present wave climate in the Bay of Biscay: spatiotemporal variability and trends from 1958 to 2001. *Journal of Climate*, 25, 2020-2035.
- Charlton, M.B. and N.W. Arnell, 2011: Adapting to climate change impacts on water resources in England an assessment of draft Water Resources Management Plans. *Global Environmental Change*, **21(1)**, 238-248.
- Charru, M., I. Seynave, F. Morneau, and J. Bontemps, 2010: Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Management, 260, 864-874.

- Chatterton, J., C. Viavattene, J. Morris, E. Penning-Rowsell, and S. Tapsell, 2010: The Costs of the Summer 2007 Floods in England. Project: SC070039/R1, Environment Agency (EA), Bristol, UK, 41 pp.
- Chauveau, M., S. Chazot, C. Perrin, P.-Y. Bourgin, E. Sauquet, J.-P. Vidal, N. Rouchy, E. Martin, J. David, T. Norotte, P. Maugis, and X. de Lacaze, 2013: What impacts of climate change on surface hydrology in France by 2070? *La Houille Blanche*, (4) 5-15
- Cheaib, A., V. Badeau, J. Boe, I. Chuine, C. Delire, E. Dufrêne, C. François, E.S. Gritti, M. Legay, C. Pagé, W. Thuiller, N. Viovy, and P. Leadley, 2012: Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. *Ecology Letters*, 15(6), 533-544.
- Cheung, W.W.L., V.W.Y. Lam, J.L. Sarmiento, K. Kearney, R. Watson, D. Zeller, and D. Pauly, 2010: Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24-35.
- Cheung, W.W.L., J. Pinnegar, G. Merino, M.C. Jones, and M. Barange, 2012: Review of climate change impacts on marine fisheries in the UK and Ireland. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 22(3), 368-388.
- Cheung, W.W.L., J.L. Sarmiento, J. Dunne, T.L. Frölicher, V.W.Y. Lam, M.L.D. Palomares, R. Watson, and D. Pauly, 2013: Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. *Nature Climate Change*, 3(3), 254-258.
- Chevalier, V., M. Pepin, L. Plee, and R. Lancelot, 2010: Rift Valley fever a threat for Europe? *Eurosurveillance*, **15(10)**, 18-28.
- Chiriacò, M.V., L. Perugini, D. Cimini, E. D'Amato, R. Valentini, G. Bovio, P. Corona, and A. Barbati, 2013: Comparison of approaches for reporting forest fire-related biomass loss and greenhouse gas emissions in southern Europe. *International Journal of Wildland Fire*, 22(6), 730-738.
- Choat, B., S. Jansen, T.J. Brodribb, H. Cochard, S. Delzon, R. Bhaskar, S.J. Bucci, T.S. Feild, S.M. Gleason, U.G. Hacke, A.L. Jacobsen, F. Lens, H. Maherali, J. Martínez-Vilalta, S. Mayr, M. Mencuccini, P.J. Mitchell, A. Nardini, J. Pittermann, R.B. Pratt, J.S. Sperry, M. Westoby, I.J. Wright, and A.E. Zanne, 2012: Global convergence in the vulnerability of forests to drought. *Nature*, 491(7426), 752-755.
- **Chow**, D.H. and G.J. Levermore, 2010: The effects of future climate change on heating and cooling demands in office buildings in the UK. *Building Services Engineering Research and Technology*, **31(4)**, 307-323.
- Christidis, N., G.C. Donaldson, and P.A. Stott, 2010: Causes for the recent changes in cold- and heat-related mortality in England and Wales. *Climatic Change*, 102(3-4), 539-553.
- Christierson, B.V., J. Vidal, and S.D. Wade, 2012: Using UKCP09 probabilistic climate information for UK water resource planning. *Journal of Hydrology*, 424-425, 48-67.
- Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A.D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J.M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J.F. Soussana, M.J. Sanz, E.D. Schulze, T. Vesala, and R. Valentini, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533.
- Ciavola, P., O. Ferreira, P. Haerens, M. Van Koningsveld, and C. Armaroli, 2011: Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project. *Environmental Science & Policy*, 14(7), 924-933.
- Ciscar, J.-C., A. Iglesias, L. Feyen, C.M. Goodess, L. Szabó, O.B. Christensen, R. Nicholls, B. Amelung, P. Watkiss, F. Bosello, R. Dankers, L. Garrote, A. Hunt, L. Horrocks, M. Moneo, A. Moreno, S. Pye, S. Quiroga, D. van Regemorter, J. Richards, R. Roson, and A. Soria, 2009: Climate Change Impacts in Europe. Final Report of the PESETA Research Project. EUR 24093 EN, EUR Scientific and Technical Research Series, Projection of Economic Impacts of Climate Change in Sectors of the European Union (PESETA) Project, Joint Research Centre (JRC) Institute for Prospective Technological Studies (IPTS) of the European Communities (EC), Publications Office of the European Union, Luxembourg, Luxembourg, 114 pp.
- Ciscar, J.-C., A. Iglesias, L. Feyen, L. Szabó, D. Van Regemorter, B. Amelung, R. Nicholls, P. Watkiss, O.B. Christensen, R. Dankers, L. Garrote, C.M. Goodess, A. Hunt, A. Moreno, J. Richards, and A. Soria, 2011: Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2678-2683.
- Civantos, E., W. Thuiller, L. Maiorano, A. Guisan, and M. Araujo, 2012: Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. *BioScience*, 62, 658-666.
- Clemo, K., 2008: Preparing for climate change: insurance and small business. *Geneva Papers on Risk and Insurance: Issues and Practice*, **33(1)**, 110-116.

Cogan, D.G., 2008: Corporate Governance and Climate Change: The Banking Sector.
A Ceres Report, Prepared for Ceres by the Climate Change Research Team,
RiskMetrics Group, Ceres, Boston, MA, USA, 58 pp.

- Conraths, F.J. and T.C. Mettenleiter, 2011: Globalisation and change of climate: growing risk for livestock epidemics in Germany [Globalisierung und klimawandel: steigendes risiko für tierseuchen in Deutschland]. Zuchtungskunde, 83(1), 21-26
- Corobov, R., S. Sheridan, N. Opopol, and K. Ebi, 2012: Heat-related mortality in Moldova: the summer of 2007. *International Journal of Climatology*, 33(11), 2551-2560.
- Corobov, R., S. Sheridan, K. Ebi, and N. Opopol, 2013: Warm season temperature-mortality relationships in Chisinau (Moldova). *International Journal of Atmospheric Sciences*, 2013, 346024, doi:10.1155/2013/346024.
- Corti, T., V. Muccione, P. Kollner-Heck, D. Bresch, and S.I. Seneviratne, 2009: Simulating past droughts and associated building damages in France. *Hydrology and Earth System Sciences*, 13(9), 1739-1747.
- Coumou, D. and S. Rahmstorf, 2012: A decade of weather extremes. *Nature Climate Change*, **2(7)**, 491-496.
- Crescio, M.I., F. Forastiere, C. Maurella, F. Ingravalle, and G. Ru, 2010: Heat-related mortality in dairy cattle: a case crossover study. *Preventative Veterinary Medicine*, 97, 191-197.
- **Crichton**, D., 2006: *Climate Change and its Effects on Small Business in the UK*. Commissioned and published by AXA Insurance UK, London, UK, 41 pp.
- Crichton, D., 2007: The Hull Floods of June 2007. Some Insurance Industry Implications. Benfield UCL Hazard Research Centre, Univeristy College London (UCL), London, UK.
- Crook, J.A., L.A. Jones, P.M. Forster, and R. Crook, 2011: Climate change impacts on future photovoltaic and concentrated solar power energy output. *Energy & Environmental Science*, 4(9), 3101-3109.
- Crump, D., A. Dengel, and M. Swainson, 2009: Indoor Air Quality in Highly Energy Efficient Homes – A Review. NF18, National House-Building Council (NHBC) Foundation, IHS BRE Press, Bracknell, UK, 82 pp.
- **Daccache**, A. and N. Lamaddalena, 2010: Climate change impacts on pressurised irrigation systems. *Proceedings of the Institution of Civil Engineers-Engineering Sustainability*, **163(2)**, 97-105.
- Daccache, A., C. Keay, R.J.A. Jones, E.K. Weatherhead, M.A. Stalham, and J.W. Knox, 2012: Climate change and land suitability for potato production in England and Wales: impacts and adaptation. *Journal of Agricultural Science*, 150(2), 161-177
- Damigos, D., 2012: Monetizing the impacts of climate change on the Greek mining sector. Mitigation and Adaptation Strategies for Global Change, 17(8), 865-878.
- Dammers, E., 2010: Making territorial scenarios for Europe. Futures, 42, 785-793.
 Dankers, R. and L. Feyen, 2008: Climate change impact on flood hazard in Europe: an assessment based on high-resolution climate simulations. Journal of Geophysical Research, 113(D19), D19105, doi:10.1029/2007JD009719.
- Dankers, R., O.B. Christensen, L. Feyen, M. Kalas, and A. de Roo, 2007: Evaluation of very high-resolution climate model data for simulating flood hazards in the Upper Danube Basin. *Journal of Hydrology*, 347(3-4), 319-331.
- **Daufresne**, M., P. Bady, and J.F. Fruget, 2007: Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. *Oecologia*, **151(3)**, 544-559.
- **Daufresne**, M., K. Lengfellner, and U. Sommer, 2009: Global warming benefits the small in aquatic ecosystems. *Proceedings of the National Academy of Sciences of the United States of America*, **106(31)**, 12788-93.
- Davies, M. and T. Oreszczyn, 2012: The unintended consequences of decarbonising the built environment: a UK case study. Energy and Buildings, 46, 80-85.
- **Davoudi**, S., M. Wishardt, and I. Strange, 2010: The ageing of Europe: demographic scenarios of Europe's futures. *Futures*, **42**, 794-803.
- Dawson, R.J., T. Ball, J. Werritty, A. Werritty, J.W. Hall, and N. Roche, 2011: Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change. *Global Environmental Change*, 21, 628-646.
- Day, A.R., P.G. Jones, and G.G. Maidment, 2009: Forecasting future cooling demand in London. *Energy and Buildings*, **41(9)**, 942-948.
- Day, J.W., R.R. Christian, D.M. Boesch, A. Yáñez-Arancibia, J. Morris, R.R. Twilley, L. Naylor, L. Schaffner, and C. Stevenson, 2008: Consequences of climate change on the ecogeomorphology of coastal wetlands. *Estuaries and Coasts*, 31(3), 477-491.

DCLG, 2012: Investigation into Overheating in Homes: Literature Review. UK
Department of Communities and Local Government, London, UK, 124 pp.

- De Freitas, C.R., D. Scott, and G. McBoyle, 2008: A second generation Climate Index for Tourism (CIT): specification and verification. *International Journal of Biometeorology*, 52(5), 399-407.
- de Graaff, M., C. Van Kessel, and J. Six, 2009: Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO₂. Soil Biology & Biochemistry, 41(6), 1094-1103.
- de Moel, H., J. van Alphen, and J.C.J.H. Aerts, 2009: Flood maps in Europe methods, availability and use. Natural Hazards and Earth System Sciences, 9(2), 289-301
- de Mooij, R. and P. Tang, 2003: Four Futures of Europe. Centraal Planbureau (CPB), The Hague, Netherlands, 220 pp.
- **De Wit**, M., M. Londo, and A. Faaij, 2011: Productivity developments in European agriculture: relations to and opportunities for biomass production. *Renewable and Sustainable Energy Reviews*, **15(5)**, 2397-2412.
- **Debernard**, J.B. and L.P. Rÿed, 2008: Future wind, wave and storm surge climate in the Northern Seas: a revisit. *Tellus A*, **60(3)**, 427-438.
- del Barrio, G., P.A. Harrison, P.M. Berry, N. Butt, M.E. Sanjuan, R.G. Pearson, and T. Dawson, 2006: Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy. *Environmental Science and Policy*, 9(2), 129-147.
- Della Bella, V., M. Bazzanti, M.G. Dowgiallo, and M. Iberite, 2008: Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. *Hydrobiologia*, 597(1), 85-95.
- Dell'Aquila, A., S. Calmanti, P.M. Ruti, M.V. Struglia, G. Pisacane, A. Carillo, and G. Sannino, 2012: Effects of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean region. Climate Research, 52, 135-157.
- Delpla, I., E. Baurès, A.-V. Jung, and O. Thomas, 2011: Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Science of the Total Environment, 409, 1683-1688.
- Delta Committee, 2008: Working Together With Water. A Living Land Builds for its Future [ten Brinke, W.B.M. (ed.)]. Findings of the Deltacommissie 2008, commissioned by the Dutch Secretary of Public Works and Water Management, Secretariat Delta Committee, The Hague, Netherlands, 134 pp.
- Dessai, S. and M. Hulme, 2007: Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the East of England. Global Environmental Change, 17(1), 59-72.
- Devictor, V., R. Julliard, D. Couvet, and F. Jiguet, 2008: Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B, 275, 2743-2748
- D'Ippoliti, D., P. Michelozzi, C. Marino, F. de'Donato, B. Menne, K. Katsouyanni, U. Kirchmayer, A. Analitis, M. Medina-Ramon, A. Paldy, R. Atkinson, S. Kovats, L. Bisanti, A. Schneider, A. Lefranc, C. Iniguez, and C.A. Perucci, 2010: The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health: A Global Access Science Source, 9, 37, doi:10.1186/1476-069X-9-37.
- Dixon, N. and E. Brook, 2007: Impact of predicted climate change on landslide reactivation: case study of Mam Tor. UK Landslides, 4, 137-147.
- **Dobney**, K., C.J. Baker, L. Chapman, and A.D. Quinn, 2010: The future cost to the United Kingdom's railway network of heat-related delays and buckles caused by the predicted increase in high summer temperatures owing to climate change. *Proceedings of the Institution of Mechanical Engineers*, *Part F. Journal of Rail and Rapid Transit*, **224(1)**, 25-34.
- **Dolinar**, M., B. Vidrih, L. Kajfež-Bogataj, and S. Medvec, 2010: Predicted changes in energy demands for heating and cooling due to climate change. *Physics and Chemistry of the Earth*, **35(1-2)**, 100-106.
- Donat, M.G., G.C. Leckebusch, J.G. Pinto, and U. Ulbrich, 2010: European storminess and associated circulation weather types: future changes deduced from a multimodel ensemble of GCM simulations. Climate Research, 42(1), 27-43.
- Donat, M.G., G.C. Leckebusch, S. Wild, and U. Ulbrich, 2011: Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. *Natural Hazards and Earth System Sciences*, 11(5), 1351-1370.
- Donatelli, M., A.K. Srivastava, G. Duveiller, and S. Niemeyer, 2012: Estimating impact assessment and adaptation strategies under climate change scenarios for crops at EU27 scale. In: International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software,

- "Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty," Sixth Biennial Meeting, 1-5 July 2012, Leipzig, Germany [Seppelt, R., A.A. Voinov, S. Lange, and D. Bankamp (eds.)]. International Environmental Modelling and Software Society (iEMSs) Secretariat, Manno, Switzerland pp. 404-411, www.iemss.org/sites/iemss2012/proceedings.html.
- Doney, S.C., M. Ruckelshaus, J. Emmett Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, J. Polovina, N.N. Rabalais, W.J. Sydeman, and L.D. Talley, 2011: Climate change impacts on marine ecosystems. *Annual Review of Marine Science*, 4, 11-37.
- Drenkhan, R., T. Kurkela, and M. Hanso, 2006: The relationship between the needle age and the growth rate in Scots pine (*Pinus sylvestris*): a retrospective analysis by needle trace method (NTM). *European Journal of Forest Research*, 125, 397-405
- **Dronin**, N. and A. Kirilenko, 2011: Climate change, food stress, and security in Russia. *Regional Environmental Change*, **11(Suppl. 1)**, 167-178.
- Duarte Alonso, A. and M.A. O'Neill, 2011: Climate change from the perspective of Spanish wine growers: a three-region study. British Food Journal, 113(2), 205-221.
- Ducharne, A., C. Baubion, N. Beaudoin, M. Benoit, G. Billen, N. Brisson, J. Garnier, H. Kieken, S. Lebonvallet, E. Ledoux, B. Mary, C. Mignolet, X. Poux, E. Sauboua, C. Schott, S. Thery, and P. Viennot, 2007: Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes. Science of the Total Environment, 375(1-3), 292-311.
- Ducharne, A., F. Habets, C. Pagé, E. Sauquet, P. Viennot, M. Déqué, S. Gascoin, A. Hachour, E. Martin, L. Oudin, L. Terray, and D. Thiéry, 2010: Climate change impacts on water resources and hydrological extremes in northern France. In: Proceedings of XVIII International Conference on Computational Methods in Water Resources, CIMNE, 21-24, June 2010, Barcelona, Spain [Carrera, J. (ed.)]. The International Center for Numerical Methods in Engineering (CIMNE), Technical University of Catalonia (UPC), Barcelona, Spain, 8 pp., congress.cimne.com/cmwr2010/Proceedings/Start.html.
- Duchêne, E., F. Huard, V. Dumas, C. Schneider, and D. Merdinoglu, 2010: The challenge of adapting grapevine varieties to climate change. *Climate Research*, 41(3), 193-204.
- Dullinger, S., A. Gattringer, W. Thuiller, D. Moser, N.E. Zimmermann, A. Guisan, W. Willner, C. Plutzar, M. Leitner, T. Mang, M. Caccianiga, T. Dirnböck, S. Ertl, A. Fischer, J. Lenoir, J. Svenning, A. Psomas, D.R. Schmatz, U. Silc, P. Vittoz, and K. Hülber, 2012: Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2(8), 619-622.
- Dumollard, G. and A. Leseur, 2011: Drawing Up A National Adaptation Policy: Feedback on Five European Case Studies. Climate Report: Research on the Economics of Climate Change, Climate Study No. 27, CDC Climat Research, Paris, France, 32 pp.
- Durant, J.M., D.O. Hjermann, G. Ottersen, and N.C. Stenseth, 2007: Climate and the match or mismatch between predator requirements and resource availability. *Climate Research*, 33(3), 271-283.
- Dury, M., A. Hambuckers, P. Warnant, A. Henrot, E. Favre, M. Ouberdous, and L. François, 2011: Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. *iForest*, 4, 82-99.
- EA, 2009: Thames Estuary 2100: Managing Flood Risk through London and the Thames Estuary. TE2100 Plan Consultation Document. Thames Estuary 2100, Environmental Agency (EA), London, UK, 214 pp.
- EA, 2011: TE2100 Strategic Outline Programme. Thames Estuary 2100, Environment Agency (EA), London, UK.
- Easterling, W.E., P.K. Aggarwal, P. Batima, K.M. Brander, L. Erda, S.M. Howden, A. Kirilenko, J. Morton, J. Soussana, J. Schmidhuber, and F.N. Tubiello, 2007: Food, fibre and forest products. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 273-313.
- EC, 2009a: White Paper: Adapting to Climate Change: Towards a European Framework for Action. Brussels, 1.4.2009, COM(2009) 147 Final, European Commission (EC), Brussels, Belgium, 16 pp.
- EC, 2009b: Guidance Document No. 24: River Basin Management in a Changing Climate. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), European Commission (EC), Publications Office of the European Union, Luxembourg, Luxembourg, 132 pp.

- EC, 2011: Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020. Brussels, 3.5.2011 COM(2011) 244 Final, Communication from the Commission to the European Parliament, The Council, The Economic and Social Committee and The Committee of the Regions, European Commission (EC), Brussels, Belgium, 16 pp.
- EC, 2013a: Climate-Adapt. European Climate Adaptation Platform. The European Climate Adaptation Platform (CLIMATE-ADAPT), a partnership between the European Commission (DG CLIMA, DG Joint Research Centre and other DGs) and the European Environment Agency (EEA). European Commission (EC), Brussels, Belguim, climate-adapt.eea.europa.eu/.
- EC, 2013b: An EU Strategy on Adaptation to Climate Change. Brussels, 16.4.2013, COM(2013) 216 Final, Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions, European Commission (EC), Brussels, Belguim, 11 pp.
- EC, 2013c: Principles and Recommendations for Integrating Climate Change Adaptation Considerations under the 2014-2020 European Maritime and Fisheries Fund Operational Programmes. Brussels, 30.7.2013. SWD(2013) 299 Final, Commission Staff Working Document, European Commission (EC), Brussels, Belguim, 20 pp.
- **ECDC**, 2009: *Technical Report: Development of Aedes albopictus Risk Map.* European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden, 45 pp.
- **ECDC**, 2012: *Technical Report: The Climatic Suitability for Dengue Transmission in Continental Europe*. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden, 22 pp.
- ECHOES Country Report: Cyprus, 2009: COST Action FP0703 ECHOES: Expected Climate Change and Options for European Silviculture Draft Country Report: Cyprus [Cacot, E. and J. Peyron (eds.)], Cyprus Department of Forests, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus, 18 pp.
- Eckert, N., E. Parent, R. Kies, and H. Baya, 2010: A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the Northern French Alps. *Climatic Change*, 101(3), 515-553.
- Edwards, M. and A.J. Richardson, 2004: Impact of climate change on marine pelagic phenology and trophic mismatch. *Nature*, **430(7002)**, 881-884.
- **EEA**, 2009: Water Resources Across Europe Confronting Water Scarcity and Drought. European Environment Agency (EEA), Publications Office of the European Union, Luxembourg, Luxembourg, 55 pp.
- EEA, 2010a: The European Environment, State and Outlook 2010. Water Resources:

 Quantity and Flows. EEA Report No. 1/2010, European Environment Agency
 (EEA), Publications Office of the European Union, Luxembourg, Luxembourg,
 32 pp.
- EEA, 2010b: *Tracking Progress Towards Kyoto and 2020 Targets in Europe.* EEA Report No. 7/2010, European Environment Agency (EEA), Publications Office of the European Union, Luxembourg, Luxembourg, 107 pp.
- EEA, 2010c: Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade. Technical report No 13/2010, European Environment Agency (EEA), Publications Office of the European Union, Luxembourg, Luxembourg, 144 pp.
- **EEA**, 2010d: *10 Messages for 2010 Marine Ecosystems*. European Environment Agency (EEA), Copenhagen, Denmark, 13 pp.
- EEA, 2012: Climate Change, Impacts and Vulnerability in Europe 2012, an Indicator-Based Report. EEA Report No. 12/2012, European Environment Agency (EEA), Copenhagen, Denmark, 304 pp.
- EEA, 2013: Adaptation in Europe Addressing Risks and Opportunities From Climate
 Change in the Context of Socio-Economic Developments. EEA Report No
 3/2013, European Environment Agency (EEA), Publications Office of the
 European Union, Luxembourg, Luxembourg, 132 pp.
- Ellwanger, G., A. Ssymank, A. Paulsch, and C. Paulsch, 2011: Natura 2000 and climate change state of knowledge: first results of an international workshop on the Isle of Vilm. *Natur und Landschaft*, **86(1)**, 15-18.
- **Elzinga**, J.A., S. van Nouhuys, D. van Leeuwen, and A. Biere, 2007: Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. *Basic and Applied Ecology*, **8(1)**, 75-88.
- Endler, C., K. Oehler, and A. Matzarakis, 2010: Vertical gradient of climate change and climate tourism conditions in the Black Forest. *International Journal of Biometeorology*, 54(1), 45-61.
- Endler, C. and A. Matzarakis, 2011: Climatic potential for tourism in The Black Forest, Germany – winter season. *International Journal of Biometeorology*, 55(3), 339-351.

- Engelhard, G.H., J.R. Ellis, M.R. Payne, R. Ter Hofstede, and J.K. Pinnegar, 2011: Ecotypes as a concept for exploring responses to climate change in fish assemblages. ICES Journal of Marine Science, 68(3), 580-591.
- Engler, R., C. Randin, W. Thuiller, S. Dullinger, N.E. Zimmermann, M.B. Araújo, P.B. Pearman, C.H. Albert, P. Choler, X. de Lamo, T. Dirnböck, D. Gómez-García, J. Grytnes, E. Heegard, F. Høistad, G. Le Lay, D. Nogues-Bravo, S. Normand, C. Piédalu, M. Puscas, M. Sebastià, A. Stanisci, J. Theurillat, M. Trivedi, P. Vittoz, and A. Guisan, 2011: 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330-2341.
- Eskeland, G.S. and T.K. Mideksa, 2010: Electricity demand in a changing climate. Mitigation and Adaptation Strategies for Global Change, 15(8), 877-897.
- **ESPACE**, 2007: *ESPACE Planning in a Changing Climate: The Strategy.* European Spatial Planning Adapting to Climate Events (ESPACE) project, The Environment Department, Hampshire County Council, Winchester, UK, 8 pp.
- Eugenio-Martin, J.L. and J.A. Campos-Soria, 2010: Climate in the region of origin and destination choice in outbound tourism demand. *Tourism Management*, **31(6)**, 744-753.
- European Parliament and EU Council, 2007: Directive of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks 2007/60/EC. European Parliament, Strasbourg, France and EU Council, Brussels, Begium, pp. L 288/27-L 288/34.
- **Eurostat**, 2009: *Forestry Statistics*. Eurostat, Statistical Office of the European Union, Publications Office of the European Union, Luxembourg, Luxembourg, 152 pp.
- Eurostat, 2011a: Migrants in Europe. A Statistical Portrait of the First and Second Generation. Eurostat, Statistical Office of the European Union, Luxembourg, Luxembourg, 148 pp.
- Eurostat, 2011b: Labour Market Statistics. Eurostat, Statistical Office of the European Union, Publications Office of the European Union, Luxembourg, Luxembourg, 109 pp.
- Falloon, P. and R. Betts, 2010: Climate impacts on European agriculture and water management in the context of adaptation and mitigation – the importance of an integrated approach. Science of the Total Environment, 408(23), 5667-5687
- FAO, 2008a: Climate Change: Implications for Food Safety. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 49 pp.
- FAO, 2008b: Climate Change Impacts on Forest Health. Forest Health & Biosecurity Working Papers FBS/34E, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 38 pp.
- Feehan, J., M. Harley, and J. Van Minnen, 2009: Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agronomy for Sustainable Development, 29(3), 409-421.
- Fernandes, P.M., A. Luz, and C. Loureiro, 2010: Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. *Forest Ecology and Management*, 260(5), 883-892.
- Ferrara, R.M., P. Trevisiol, M. Acutis, G. Rana, G.M. Richter, and N. Baggaley, 2010: Topographic impacts on wheat yields under climate change: two contrasted case studies in Europe. *Theoretical and Applied Climatology*, 99(1-2), 53-65.
- Ferron, C., D. Trewick, P. Le Conte, E.R. Batard, and L. Girard, 2006: Heat stroke in hospital patients during the summer 2003 heat wave: a nosocomial disease. *Presse Medicale*, **25(2)**, 196-199.
- Feyen, L. and R. Dankers, 2009: Impact of global warming on streamflow drought in Europe. *Journal of Geophysical Research: Atmospheres*, 114(D17), D17116, doi:10.1029/2008JD011438.
- Feyen, L., J.I. Barredo, and R. Dankers, 2009: Implications of global warming and urban land use change on flooding in Europe. In: Water & Urban Development Paradigms – Towards an Integration of Engineering, Design and Management Approaches [Feyen, J., K. Shannon, and M. Neville (eds.)]. CRC Press/Balkema, Leiden, Netherlands, pp. 217-225.
- Feyen, L., R. Dankers, K. Bódis, P. Salamon, and J.I. Barredo, 2012: Fluvial flood risk in Europe in present and future climates. *Climatic Change*, **112**, 47-62.
- Filz, K.J., J.O. Engler, J. Stoffels, M. Weitzel, and T. Schmitt, 2013: Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. *Biodiversity and Conservation*, 22(10), 2223-2241.
- Finger, R., W. Hediger, and S. Schmid, 2011: Irrigation as adaptation strategy to climate change a biophysical and economic appraisal for Swiss maize production. *Climatic Change*, **105(3-4)**, 509-528.
- Fischer, D., S.M. Thomas, and C. Beierkuhnlein, 2010: Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospatial Health, 5(1), 59-69.

Fischer, D., C. Thomas, F. Niemitz, and C. Reineking, 2011: Projection of climate suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global and Planetary Change, 78, 54-65.

- Fischer, G., S. Prieler, H. van Velthuizen, G. Berndes, A. Faaij, M. Londo, and M. de Wit, 2010: Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: land use scenarios. *Biomass and Bioenergy*, 34(2), 173-187.
- Fischer, L., R. Purves, C. Huggel, J. Noetzli, and W. Haeberli, 2012: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. *Natural Hazards and Earth System Science*, 12(1), 241-254.
- Forkel, R. and R. Knoche, 2006: Regional climate change and its impact on photooxidant concentrations in sourthern Germany: simulations with a coupled regional climate-chemistry model. *Journal of Geophysical Research Atmospheres*, 111(D12), D12302, doi:10.1029/2005JD006748.
- Forkel, R. and R. Knoche, 2007: Nested regional climate-chemistry simulations for central Europe. Comptes Rendus Geoscience, 339(11-12), 734-746.
- Forsius, M., S. Anttila, L. Arvola, I. Bergström, H. Hakola, H.I. Heikkinen, J. Helenius, M. Hyvärinen, K. Jylhä, J. Karjalainen, T. Keskinen, K. Laine, E. Nikinmaa, P. Peltonen-Sainio, K. Rankinen, M. Reinikainen, H. Setälä, and J. Vuorenmaa, 2013: Impacts and adaptation options of climate change on ecosystem services in Finland: a model-based study. Current Opinion in Environmental Sustainability, 5(1), 26-40.
- Förster, H. and J. Lilliestam, 2010: Modeling thermoelectric power generation in view of climate change. *Regional Environmental Change*, **10(4)**, 327-338.
- **Founda**, D. and C. Giannakopoulos, 2009: The exceptionally hot summer of 2007 in Athens, Greece a typical summer in the future climate? *Global and Planetary Change*, **67(3-4)**, 227-236.
- Fronzek, S., M. Luoto, and T.R. Carter, 2006: Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. *Climate Research*, 32(1), 1-12.
- Fronzek, S., T.R. Carter, J. Räisänen, L. Ruokolainen, and M. Luoto, 2010: Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Climatic Change, 99(3), 515-534.
- Fronzek, S., T.R. Carter, and M. Luoto, 2011: Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. *Natural Hazards and Earth System Science*, 11(11), 2981-2995.
- **Fronzek**, S., T.R. Carter, and K. Jylhä, 2012: Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. *Global Ecology and Biogeography*, **21(1)**, 19-35.
- Fuhrer, J., 2009: Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96(2), 173-194.
- Fuhrer, J., M. Beniston, A. Fischlin, C. Frei, S. Goyette, K. Jasper, and C. Pfister, 2006: Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change, 79(1-2), 79-102.
- Fujihara, Y., K. Tanaka, T. Watanabe, T. Nagano, and T. Kojiri, 2008: Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: use of dynamically downscaled data for hydrologic simulations. *Journal* of Hydrology, 353(1-2), 33-48.
- Furrer, B., V. Hoffmann, and M. Swoboda, 2009: Banking & Climate Change Opportunities and Risks: An Analysis of Climate Strategies in more than 100 Banks Worldwide. Sustainable Asset Management (SAM), ETH Zurich (ETH), and ZHAW Zurich University of Applied Sciences, supported by The World Wide Fund for Nature (WWF), Zurich, Switzerland, 51 pp.
- Gale, P., B. Stephenson, A. Brouwer, M. Martinez, A. de la Torre, J. Bosch, M. Foley-Fisher, P. Bonilauri, A. Lindström, R.G. Ulrich, C.J. de Vos, M. Scremin, Z. Liu, L. Kelly, and M.J. Muñoz, 2012: Impact of climate change on risk of incursion of Crimean-Congo haemorrhagic fever virus in livestock in Europe through migratory birds. *Journal of Applied Microbiology*, 112(2), 246-257.
- Gallego-Sala, A.V., J.M. Clark, J.I. House, H.G. Orr, I.C. Prentice, P. Smith, T. Farewell, and S.J. Chapman, 2010: Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Climate Research, 45, 151-163.
- Gao, X. and F. Giorgi, 2008: Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62(3-4), 195-209.
- Garcia-Fayos, P. and E. Bochet, 2009: Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Global Change Biology, 15(2), 306-318.

- García-López, J.M. and C. Alluéa, 2011: Modelling phytoclimatic versatility as a large scale indicator of adaptive capacity to climate change in forest ecosystems. *Ecological Modelling*, 222(8), 1436-1447.
- García-Ruiz, J.M., J.I. López-Moreno, S.M. Vicente-Serrano, T. Lasanta-Martínez, and S. Baguería, 2011: Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3-4), 121-139.
- Gardiner, B., K. Blennow, J. Carnus, P. Fleischer, F. Ingemarson, G. Landmann, M. Lindner, M. Marzano, B. Nicoll, C. Orazio, J. Peyron, M. Reviron, M. Schelhaas, A. Schuck, M. Spielmann, and T. Usbeck, 2010: Destructive Storms in European Forests: Past and Forthcoming Impacts. Final Report to European Commission DG Environment. European Forest Institute, Atlantic European Regional Office (EFIATLANTIC), Bordeaux, France, 138 pp.
- Garza-Gil, M., J. Torralba-Cano, and M. Varela-Lafuente, 2010: Evaluating the economic effects of climate change on the European sardine fishery. *Regional Environmental Change*, 11(1), 87-95.
- Gaslikova, L., A. Schwerzmann, C.C. Raible, and T.F. Stocker, 2011: Future storm surge impacts on insurable losses for the North Sea region. *Natural Hazards and Earth System Sciences*, 11(4), 1205-1216.
- GDV, 2011: *The Climate Change Challenge: Answers and Demands of German Insurers.*Gesamtverband der Deutschen Versicherungswirtschaft e.V German Insurance Association (GDV), Berlin, Germany, 18 pp.
- Gehrig-Fasel, J., A. Guisan, and N.E. Zimmermann, 2007: Tree line shifts in the Swiss Alps: climate change or land abandonment? *Journal of Vegetation Science*, 18(4), 571-582.
- Giannakopoulos, C., P. Le Sager, M. Bindi, M. Moriondo, E. Kostopoulou, and C.M. Goodess, 2009: Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. *Global and Planetary Change*, **68(3)**, 209-224.
- Giannakopoulos, C., E. Kostopoulou, K.V. Varotsos, K. Tziotziou, and A. Plitharas, 2011: An integrated assessment of climate change impacts for Greece in the near future. Regional Environmental Change, 11(4), 829-843.
- Gifford, R., L. Steg, and J.P. Reser, 2011: Environmental pyschology. In: The IAAP Handbook of Applied Psychology [Martin, P.R., M.C. Cheung, L. Kyrios, M. Littlefield, J.B. Knowles, M. Overmier, and J.M. Prieto (eds.)]. Wiley-Blackwell, Chichester, UK, pp. 440-471.
- Gilgen, A.K., C. Signarbieux, U. Feller, and N. Buchmann, 2010: Competitive advantage of *Rumex obtusifolius* L. might increase in intensively managed temperate grasslands under drier climate. *Agriculture, Ecosystems & Environment*, 135(1-2), 15-23.
- Gill, S., J. Handley, R. Ennos, and S. Pauleit, 2007: Adapting cities for climate change: the role of the green infrastructure. *Built Environment*, 33(1), 115-133.
- Giuggiola, A., T.M. Kuster, and S. Saha, 2010: Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. *Journal of Biogeosciences and Forestry*, 3, 95-97.
- **Giuntoli**, I., B. Renard, J.-P. Vidal, and A. Bard, 2013: Low flows in France and their relationship to large-scale climate indices. *Journal of Hydrology*, **482**, 105-118.
- GLA, 2010: The Draft Climate Change Adaptation Strategy for London, Public Consultation Draft. Greater London Authority (GLA), London, UK, 136 pp.
- **Glenk**, K. and A. Fisher, 2010: Insurance, prevention or just wait and see? Public preferences for water management strategies in the context of climate change. *Ecological Economics*, **69**, 2279-2291.
- Goderniaux, P., S. Brouyére, S. Blenkinsop, A. Burton, H.J. Fowler, P. Orban, and A. Dassargues, 2011: Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research, 47(12), W12516, doi:10.1029/2010WR010082.
- Golombek, R., S. Kittlesen, and I. Haddeland, 2012: Climate change: impacts on electricity markets in Western Europe. Climatic Change, 113, 357-370.
- Gómez-Rodríguez, C., J. Bustamante, and C. Díaz-Paniagua, 2010: Evidence of hydroperiod shortening in a preserved system of temporary ponds. *Remote Sensing*, 2(6), 1439-1462.
- **Gonzalez-Camacho**, J., J.C. Mailhol, and F. Ruget, 2008: Local impact of increasing CO_2 in the atmosphere on maize crop water productivity in the Drome valley, France. *Irrigation and Drainage*, **57(2)**, 229-243.
- Goode, J., 2012: Viticulture: fruity with a hint of drought. Nature, 492(7429), 351-353.
 Goodess, C., D. Jacob, M. Déqué, J. Guttiérrez, R. Huth, E. Kendon, G. Leckebusch, P. Lorenz, and V. Pavan, 2009: Downscaling methods, data and tools for input to impacts assessments. In: ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project [van der Linden, P. and J.F.B. Mitchell (eds.)]. Met Office Hadley Centre, Exeter, UK, pp. 59-78.

- Görgen, K., J. Beersma, H. Buiteveld, G. Brahmer, M. Carambia, O.d. Keizer, P. Krahe, E. Nilson, R. Lammersen, C. Perrin, and D. Volken, 2010: Assessment of Climate Change Impacts on Discharge in the River Rhine Basin. Results of the RheinBlick2050 Project. International Commission for the Hydrology of the Rhine Basin, Lelystad, Netherlands, 228 pp.
- Gottfried, M., H. Pauli, A. Futschik, M. Akhalkatsi, P. Barancok, J.L. Benito Alonso, G. Coldea, J. Dick, B. Erschbamer, M.R. Fernández Calzado, G. Kazakis, J. Krajci, P. Larsson, M. Mallaun, O. Michelsen, D. Moiseev, P. Moiseev, U. Molau, A. Merzouki, L. Nagy, G. Nakhutsrishvili, B. Pedersen, G. Pelino, M. Puscas, G. Rossi, A. Stanisci, J.-P. Theurillat, M. Tomaselli, L. Villar, P. Vittoz, I. Vogiatzakis, and G. Grabherr, 2012: Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111-115.
- Graux, A., R. Lardy, G. Bellocchi, and J. Soussana, 2012: Global warming potential of French grassland-based dairy livestock systems under climate change. *Regional Environmental Change*, 12(4), 751-763.
- **Gregory**, P.J. and B. Marshall, 2012: Attribution of climate change: a methodology to estimate the potential contribution to increases in potato yield in Scotland since 1960. *Global Change Biology*, **18(4)**, 1372-1388.
- Gret-Regamy, A., P. Bebi, I. Bishop, and W. Schmid, 2008: Linking GIS-based models to value ecosystem services in an alpine region. *Journal of Environmental Management*, 89, 197-208.
- Gret-Regamy, A., S. Brunner, J. Altwegg, and P. Bebi, 2013: Facing uncertainties in ecosystem services-based resource management. *Journal of Environmental Management*, 127(Suppl.), S145-S154.
- Grime, J.P., J.D. Fridley, A.P. Askew, K. Thompson, J.G. Hodgson, and C.R. Bennett, 2008: Long-term resistance to simulated climate change in an infertile grassland. *Proceedings of the National Academy of Sciences of the United States of America*, 105(29), 10028-10032.
- Grossi, C.M., P. Brimblecombe, and I. Harris, 2007: Predicting long term freeze-thaw risks on Europe built heritage and archaeological sites in a changing climate. Science of the Total Environment, 377(2-3), 273-281.
- Grossi, C.M., A. Bonazza, P. Brimblecombe, I. Harris, and C. Sabbioni, 2008: Predicting 21st century recession of architectural limestone in European cities. *Environmental Geology*, 56(3-4), 455-461.
- **Grossi**, C.M., P. Brimblecombe, and H. Lloyd, 2010: The effects of weather on visits to historic properties. *Views*, **47**, 69-71.
- Grossi, C.M., P. Brimblecombe, B. Mendez, D. Benavente, I. Harris, and M. Deque, 2011: Climatology of salt transitions and implications for stone weathering. *Science of the Total Environment*, 409(13), 2577-2585.
- Guardiola-Albert, C. and C.R. Jackson, 2011: Potential Impacts of climate change on groundwater supplies to the Doñana wetland, Spain. Wetlands, 31(5), 907-920.
- Guis, H., C. Caminade, C. Calvete, A.P. Morse, A. Tran, and M. Baylis, 2012: Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. *Journal of the Royal Society Interface*, 9(67), 339-350.
- Haasnoot, M., H. Middelkoop, A. Offermans, E. van Beek, and W.P.A. van Deursen, 2012: Exploring pathways for sustainable water management in river deltas in a changing environment. *Climatic Change*, **115(3-4)**, 795-819.
- Haddeland, I., P.C. Røhr, and H. Udnæs, 2011: Effects of Climate Changes on Water Resources in the Glomma River Basin, Norway. WATCH Technical Report No. 27, Water and Global Change (WATCH) project, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway and Glommen and Laagen Water Management Association (GLB), Lillehammer, Norway, 17 pp.
- Haigh, I., R. Nicholls, and N. Wells, 2010: Assessing changes in extreme sea levels: application to the English Channel, 1900-2006. Continental Shelf Research, 30(9), 1042-1055.
- Haines, A., P. Wilkinson, C. Tonne, and I. Roberts, 2009a: Aligning climate change and public health policies. *The Lancet*, 374(9707), 2035-2038.
- Haines, A., A.J. McMichael, K.R. Smith, I. Roberts, J. Woodcock, A. Markandya, B.G. Armstrong, D. Campbell-Lendrum, A.D. Dangour, M. Davies, N. Bruce, C. Tonne, M. Barrett, and P. Wilkinson, 2009b: Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. *The Lancet*, 374(9707), 2104-2114.
- **Haines-Young**, R., M. Potschin, and F. Kienast, 2012: Indicators of ecosystem service potential at European scales: mapping marginal changes and trade-offs. *Ecological Indicators*, **21**, 39-53.
- Hajat, S., M. O'Connor, and T. Kosatsky, 2010: Health effects of hot weather: from awareness of risk factors to effective health protection. *Lancet*, 375(9717), 856-863.

Hakala, K., A.O. Hannukkala, E. Huusela-Veistola, M. Jalli, and P. Peltonen-Sainio, 2011: Pests and diseases in a changing climate: a major challenge for Finnish crop production. *Agricultural and Food Science*, 20(1), 3-14.

- Hallegatte, S., F. Henriet, and J. Corfee-Morlot, 2008: The Economics of Climate Change Impacts and Policy Benefits at City Scale: A Conceptual Framework. OECD Environment Working Paper No. 4, OECD Publishing, Paris, France, 48 pp.
- Hallegatte, S., N. Ranger, O. Mestre, P. Dumas, J. Corfee-Morlot, C. Herweijer, and R. Wood, 2011: Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Climatic Change, 104, 113-137.
- Hallegatte, S., C. Green, R.J. Nicholls, J. Corfree-Morlot, 2013: Future flood losses in major coastal cities. *Nature Climate Change*, 3, 802-806, doi:10.1038/ nclimate1979.
- Halpern, B.S., S. Walbridge, K.A. Selkoe, C.V. Kappel, F. Micheli, C. D'Agrosa, J.F. Bruno, K.S. Casey, C. Ebert, H.E. Fox, R. Fujita, D. Heinemann, H.S. Lenihan, E.M.P. Madin, M.T. Perry, E.R. Selig, M. Spalding, R. Steneck, and R. Watson, 2008: A global map of human impact on marine ecosystems. *Science*, 319, 948-952.
- Hames, J. and S. Vardoulakis, 2012: Climate Change Risk Assessment for the Health Sector. Sector report for CCRA – UK Climate Change Risk Assessment 2012 – GA0204, Department for Environment, Food and Rural Affairs (DEFRA), London, UK, 240 pp.
- Hamilton, J.M. and R.S.J. Tol, 2007: The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study. *Regional Environmental Change*, **7(3)**, 161-172.
- Hamin, E.M. and N. Gurran, 2009: Urban form and climate change: balancing adaptation and mitigation in the U.S. and Australia. *Habitat International*, 33(3), 238-245.
- **Hamududu**, B. and A. Killingtveit, 2012: Assessing climate change impacts on global hydropower. *Energies*, **5**, 305-322.
- Hanewinkel, M., D.A. Cullmann, M. Schelhaas, G. Nabuurs, and N.E. Zimmermann, 2013: Climate change may cause severe loss in the economic value of European forest land. *Nature Climate Change*, 3, 203-207.
- Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. *Review of Geophysics*, **48(4)**, RG4004, doi:10.1029/2010RG000345.
- Hanso, M. and R. Drenkhan, 2007: Retrospective analysis of Lophodermium seditiosum epidemics in Estonia. Acta Silvatica & Lignaria Hungarica, 2007(SI), 31-45.
- Hanson, S., R. Nicholls, N. Ranger, S. Hallegatte, J. Corfee-Morlot, C. Herweijer, and J. Chateau, 2011: A global ranking of port cities with high exposure to climate extremes. Climatic Change, 104(1), 89-111.
- Hardacre, C.J., P.I. Palmer, K. Baumanns, M. Rounsevell, and D. Murray-Rust, 2013: Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs. Atmospheric Chemistry and Physics, 13, 5451-5472. doi:10.5194/acp-13-5451-2013.
- Harrison, G.P., L.C. Cradden, and J.P. Chick, 2008: Preliminary assessment of climate change impacts on the UK onshore wind energy resource. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 30(14), 1286-1299.
- Harrison, P.A., P.M. Berry, C. Henriques, and I.P. Holman, 2008: Impacts of socioeconomic and climate change scenarios on wetlands: linking water resource and biodiversity meta-models. *Climatic Change*, 90(1-2), 113-139.
- Harrison, P.A., M. Vandewalle, M.T. Sykes, P.M. Berry, R. Bugter, F. de Bello, C.K. Feld, U. Grandin, R. Harrington, J.R. Haslett, R.H.G. Jongman, G.W. Luck, P.M. da Silva, M. Moora, J. Settele, J.P. Sousa, and M. Zobel, 2010: Identifying and prioritising services in European terrestrial and freshwater ecosystems. *Biodiversity and Conservation*, 19(10), 2791-2821.
- Harrison, P.A., I.P. Holman, G. Cojocaru, K. Kok, A. Kontogianni, M. Metzger, and M. Gramberger, 2013: Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Regional Environmental Change, 13(4), 761-780.
- Hartel, T., R. B\(\text{\textit{D}}\) ncil\(\text{\text{\text{C}}}\), and D. Cog\(\text{\text{\text{D}}\) niceanu, 2011: Spatial and temporal variability of aquatic habitat use by amphibians in a hydrologically modified landscape. Freshwater Biology, 56(11), 2288-2298.
- Hartikainen, K., J. Riikonen, A. Nerg, M. Kivimäenpää, V. Ahonen, A. Tervahauta, S. Kärenlampi, M. Mäenpää, M. Rousi, S. Kontunen-Soppela, E. Oksanen, and T. Holopainen, 2012: Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environmental and Experimental Botany, 84, 33-43.

Haugen, J.E. and T. Iversen, 2008: Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. *Tellus A*, 60(3), 411-426.

- Hawkins, E., J. Robson, R. Sutton, D. Smith, and N. Keenlyside, 2011: Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. *Climate Dynamics*, 37(11-12), 2495-2509.
- Hawkins, E., T.E. Fricker, A.J. Challinor, C.A.T. Ferro, C.K. Ho, and T.M. Osborne, 2013: Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. *Global Change Biology*, 19(3), 937-947.
- Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. *Journal of Geophysical Research*, 113(D20), D20119, doi:10.1029/2008JD010201.
- Heath, M.R., F.C. Neat, J.K. Pinnegar, D.G. Reid, D.W. Sims, and P.J. Wright, 2012: Review of climate change impacts on marine fish and shellfish around the UK and Ireland. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 22(3), 337-367.
- Heidrich, O., R.J. Dawson, D. Reckian, and C.L. Walsh, 2013: Assessment of the climate preparedness of 30 urban areas in the UK. Climatic Change, 120(4), 771-784.
- Hein, L., M.J. Metzger, and A. Moreno, 2009: Potential impacts of climate change on tourism; a case study for Spain. Current Opinion in Environmental Sustainability, 1(2), 170-178.
- Hekkenberg, M., R. Benders, H. Moll, and A. Schoot Uiterkamp, 2009: Indications for a changing electricity demand pattern: the temperature dependence of electricity in the Netherlands. *Energy Policy*, 37, 1542-1551.
- HELCOM, 2007: Climate Change in the Baltic Sea Area HELCOM Thematic Assessment in 2007. Baltic Sea Environment Proceedings No. 111, Prepared by Marine Environmental Consultants (MEC) in collaboration with HELCOM Secretariat, Baltic Marine Environment Protection Commission – Helsinki Commission, Helsinki, Finland, 49 pp.
- Hellmann, F. and J.E. Vermaat, 2012: Impact of climate change on water management in Dutch peat polders. *Ecological Modelling*, 240, 74-83.
- Helming, K., K. Diehl, T. Kuhlman, T. Jansson, P.H. Verburg, M. Bakker, M. Perez-Soba, L. Jones, P.J. Verkerk, P. Tabbus, J. Breton Morris, Z. Drillet, J. Farrington, P. LeMouël, P. Zagame, T. Stuczynski, G. Siebielec, S. Sieber, and H. Wiggering, 2011: Ex ante impact assessment of policies affecting land use, Part B: application of the analytical framework. *Ecology and Society*, 16(1), 29, www.ecologyand society.org/vol16/iss1/art29/.
- Heltberg, R., H. Gitay, and R.G. Prabhu, 2012: Community-based adaptation: lessons from a grant competition. Climate Policy, 12(2), 143-163.
- Hemery, G.E., 2008: Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. *International Forestry Review*, 10(4), 591-607.
- Hemery, G.E., J.R. Clark, E. Aldinger, H. Claessens, M.E. Malvolti, E. O'Connor, Y. Raftoyannis, P.S. Savill, and R. Brus, 2010: Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry, 83(1), 65-81.
- Henderson, G.R. and D.J. Leathers, 2010: European snow cover extent variability and associations with atmospheric forcings. *International Journal of Climatology*, 30(10), 1440-1451.
- Henderson, P.A., 2007: Discrete and continuous change in the fish community of the Bristol Channel in response to climate change. *Journal of the Marine Biological Association of the UK*, 87(02), 589-598.
- Hendrickx, F. and E. Sauquet, 2013: Impact of warming climate on water management for the Ariège River basin (France). *Hydrological Sciences Journal*, **58(5)**, 976-993, doi:10.1080/02626667.2013.788790.
- Henriques, C., I.P. Holman, E. Audsley, and K. Pearn, 2008: An interactive multi-scale integrated assessment of future regional water availability for agricultural irrigation in East Anglia and North West England. Climatic Change, 90(1-2), 89-111.
- Hermans, C.M.L., I.R. Geijzendorffera, F. Ewertb, M.J. Metzgera, P.H. Vereijkene, G.B. Woltjerf, and A. Verhagene, 2010: Exploring the future of European crop production in a liberalised market, with specific consideration of climate change and the regional competitiveness. *Ecological Modelling*, 221, 2177-2187.
- Hermant, M., J. Lobry, S. Bonhommeau, J. Poulard, and O. Le Pape, 2010: Impact of warming on abundance and occurrence of flatfish populations in the Bay of Biscay (France). *Journal of Sea Research*, 64(1-2), 45-53.
- Hertel, S., A. Le Tertre, K. Jöckel, and B. Hoffmann, 2009: Quantification of the heat wave effect on cause-specific mortality in Essen, Germany. European Journal of Epidemiology, 24(8), 407-414.

- Herweijer, C., N. Ranger, and R.E.T. Ward, 2009: Adaptation to climate change: threats and opportunities for the insurance industry. *Geneva Papers on Risk and Insurance: Issues and Practice*, 34, 360-380.
- Hilpert, K., F. Mannke, and P. Schmidt-Thome, 2007: Towards Climate Change Adapatation Strategies in the Baltic Sea Region. Guidance for decision-makers, produced in the context of the INTERREG IIIB project, "Developing Policies and Adaptation Strategies to Climate Change in the Baltic Sea Region (ASTRA)", Geological Survey of Finland, Espoo, Finland, 55 pp.
- Hinkel, J., R. Nicholls, A. Vafeidis, R. Tol, and T. Avagianou, 2010: Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitigation and Adaptation Strategies for Global Change, 15(7), 703-719.
- Hlásny, T., Z. Barcza, M. Fabrika, B. Balázs, G. Churkina, J. Pajtík, R. Sedmák, and M. Turčáni, 2011: Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research, 47(3), 219-236.
- Hochrainer, S., J. Linnerooth-Bayer, and R. Mechler, 2010: European Union Solidarity Fund. Mitigation and Adaptation Strategies for Global Change, 15(7), 797-810.
- Hodzic, A., S. Madronich, B. Bohn, S. Massie, L. Menut, and C. Wiedinmyer, 2007: Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. *Atmospheric Chemistry and Physics*, 7, 4043-4064.
- **Hoes**, O., 2006: *Aanpak Wateroverlast in Polders op Basis van Risicobeheer.* Technische Universiteit Delft, Delft, Netherlands, 188 pp. (in Dutch).
- Hoffmann, B., S. Häfele, and U. Karl, 2013: Analysis of performance losses of thermal power plants in Germany – a System Dynamics model approach using data from regional climate modeling. *Energy*, 49, 193-203.
- Hoffmann, I., 2010: Climate change and the characterization, breeding and conservation of animal genetic resources. Animal Genetics, 41(Suppl. 1), 32-46.
- Hoinka, K.P., A. Carvalho, and A.I. Miranda, 2009: Regional-scale weather patterns and wildland fires in central Portugal. *International Journal of Wildland Fire*, 18(1), 36-49.
- Holland, T. and B. Smit, 2010: Climate change and the wine industry: current research themes and new directions. *Journal of Wine Research*, 21(2-3), 125-136.
- House, J.I., H.G. Orr, J.M. Clark, A. Gallego-Sala, C. Freeman, I.C. Prentice, and P. Smith, 2011: Climate change and the British Uplands: evidence for decision-making. *Climate Research*, 45, 3-12.
- Howden, N.J.K., T.P. Burt, F. Worrall, M.J. Whelan, and M.Z. Bieroza, 2010: Nitrate concentrations and fluxes in the River Thames over 140 years (1868 - 2008): are increases irreversible? *Hydrological Processes*, 24, 2657-2662.
- Howden, S.M., J.F. Soussana, F.N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, 2007: Adapting agriculture to climate change. *Proceedings of the National Academy of Sciences of the United States of America*, 104(50), 19691-19696.
- HPA, 2012: Health Effects of Climate Change in the UK 2012 Current Evidence, Recommendations and Research Gaps [Vardoulakis, S. and C. Heaviside, (eds.)]. Health Protection Agency (HPA), Didcot, UK, 242 pp.
- HSY, 2010: Helsinki Metropolitan Area Adaptation to Climate Change Strategy. Helsinki Region Environmental Services Authority [Helsingin seudun ympäristöpalvelut -kuntayhtymä (HSY)], Helsinki, Finland, 88 pp.
- Huang, C., A.G. Barnett, X. Wang, P. Vaneckova, G. FitzGerald, and S. Tong, 2011: Projecting future heat related mortality under climate change scenarios: a systematic review. *Environmental Health Perspectives*, 119(12), 1681-1690.
- Hueging, H., R. Haas, K. Born, D. Jacob, and J.G. Pinto, 2013: Regional changes in wind energy potential over Europe using regional climate model ensemble projections. *Journal of Applied Meteorology and Climatology*, 52(4), 903-917
- Huggel, C., N. Salzmann, S. Allen, J. Caplan-Auerbach, L. Fischer, W. Haeberli, C. Larsen, D. Schneider, and R. Wessels, 2010: Recent and future warm extreme events and high-mountain slope stability. *Philosophical Transactions of the Royal Society A*, 368, 1919, 2435-2459, doi:10.1098/rsta.2010.0078.
- Huggel, C., J.J. Clague, and O. Korup, 2012: Is climate change responsible for changing landslide activity in high mountains? *Earth Surface Processes and Landforms*, 37(1), 77-91.
- **Hunt**, A. and P. Watkiss, 2011: Climate change impacts and adaptation in cities: a review of the literature. *Climatic Change*, **104(1)**, 13-49.
- **Huntjens**, P., C. Pahl-Wostl, and J. Grin, 2010: Climate change adaptation in European river basins. *Regional Environmental Change*, **10**, 263-284.
- Huntley, B., R.E. Green, Y.C. Collingham, and S.G. Willis, 2007: A Climatic Atlas of European Breeding Birds. Published as a partnership between Durham University, The Royal Society for the Protection of Birds (RSPB) and Lynx Edicions in association with the University of Cambridge, BirdLife International, and the European Bird Census Council (EBCC), Lynx Edicions, Barcelona, Spain, 521 pp.

- Hurkmans, R., W. Terink, R. Uijlenhoet, P. Torfs, D. Jacob, and P.A. Troch, 2010: Changes in streamflow dynamics in the Rhine basin under three high-resolution regional climate scenarios. *Journal of Climate*, 23(3), 679-699.
- Huss, M., 2011: Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resources Research, 47(7), W07511, doi:10.1029/2010WR010299.
- ICES, 2010: 6.4.2. Cod in Subarea IV (North Sea) and Division IIIa West (Skagerrak). In: Report of the ICES Advisory Committee 2010. ICES Advice, 2010. Book 6: North Sea. International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark, pp. 35-54.
- **Iglesias**, A., L. Garrote, F. Flores, and M. Moneo, 2007: Challenges to manage the risk of water scarcity and climate change in the Mediterranean. *Water Resources Management*, **21(5)**, 775-788.
- Iglesias, A., L. Garrote, A. Diz, J. Schlickenrieder, and M. Moneo, 2012: Water and people: assessing policy priorities for climate change adaptation in the Mediterranean. In: Regional Assessment of Climate Change in the Mediterranean [Navarra, A. and L. Tubiana (eds.)]. Springer, Dordrecht, Netherlands, pp. 201-233.
- Isaac, M. and D.P. van Vuuren, 2009: Modelling global residential sector energy demand for heating and air conditioning in the context of climate change. *Energy Policy*, 37(2), 507-521.
- Jackson, A.C. and J. McIlvenny, 2011: Coastal squeeze on rocky shores in northern Scotland and some possible ecological impacts. *Journal of Experimental Marine Biology and Ecology*, 400(1-2), 314-321.
- Jackson, C.R., R. Meister, and C. Prudhomme, 2011: Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. *Journal of Hydrology*, 399(1-2), 12-28.
- Jacob, D. and R. Podzun, 2010: Global warming below 2°C relative to pre-industrial level: how might climate look like in Europe. Nova Acta Leopoldina, 384, 71-76.
- Jacob, D.J. and D.A. Winner, 2009: Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63.
- Jacob, D., J. Petersen, B. Eggert, A. Alias, O. Bøssing Christensen, L.M. Bouwer, A. Braun, A. Colette, M. Déqué, G. Georgievski, E. Georgopoulou, A. Gobiet, L. Menut, G. Nikulin, A. Haensler, N. Hempelmann, C. Jones, K. Keuler, S. Kovats, N. Kröner, S. Kotlarski, A. Kriegsmann, E. Martin, E. van Meijgaard, C. Moseley, S. Pfeifer, S. Preuschmann, C. Radermacher, K. Radtke, D. Rechid, M. Rounsevell, P. Samuelsson, S. Somot, J.-F. Soussana, C. Teichmann, R. Valentini, R. Vautard, B. Weber, and P. Yiou, 2013: EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change (in press), doi:10.1007/s10113-013-0499-2.
- Jactel, H., B.C. Nicoll, M. Branco, J. Gonzalez-Olabarria, W. Grodzki, B. Långström, F. Moreira, S. Netherer, C. Orazio, D. Piou, H. Santos, M.J. Schelhaas, K. Tojic, and F. Vodde, 2009: The influences of forest stand management on biotic and abiotic risks of damage. *Annals of Forest Science*, 66(7), doi:10.1051/forest/2009054.
- Jacxsens, L., P.A. Luning, J.G.A.J. van der Vorst, F. Devlieghere, R. Leemans, and M. Uyttendaele, 2010: Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety the case study of fresh produce supply chain. Food Research International, 43(7), 1925-1935.
- James, P., K. Tzoulas, M.D. Adams, A. Barber, J. Box, J. Breuste, T. Elmqvist, M. Frith, C. Gordon, K.L. Greening, J. Handley, S. Haworth, A.E. Kazmierczak, M. Johnston, K. Korpela, M. Moretti, J. Niemelä, S. Pauleit, M.H. Roe, J.P. Sadler, and C. Ward Thompson, 2009: Towards an integrated understanding of green space in the European built environment. Urban Forestry and Urban Greening, 8(2), 65-75.
- Jenkins, D.P., 2009: The importance of office internal heat gains in reducing cooling loads in a changing climate. *International Journal of Low-Carbon Technologies*, 4(3), 134-140.
- Jenkins, D.P., Y. Liu, and A.D. Peacock, 2008: Climatic and internal factors affecting future UK office heating and cooling energy consumptions. *Energy and Buildings*, 40(5), 874-881.
- Jeppesen, E., B. Kronvang, J.E. Olesen, J. Audet, M. Søndergaard, C.C. Hoffmann, H.E. Andersen, T.L. Lauridsen, L. Liboriussen, S.E. Larsen, M. Beklioglu, M. Meerhoff, A. Özen, and K. Özkan, 2011: Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. *Hydrobiologia*, 663(1), 1-21.
- Jiguet, F., R.D. Gregory, V. Devictor, R.E. Green, P. Vorisek, A. Van Strien, and D. Couvet, 2010: Population trends of European common birds are predicted by characteristics of their climatic niche. Global Change Biology, 16(2), 497-505.

Johnk, K.D., J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser, and J.M. Stroom, 2008: Summer heatwaves promote blooms of harmful cyanobacteria. *Global Change Biology*, 14(3), 495-512.

- Johnson, A., M. Acreman, M. Dunbar, S. Feist, A. Giacomello, R. Gozlan, S. Hinsley, A. Ibbotson, H. Jarvie, J. Jones, M. Longshaw, S. Maberly, T. Marsh, C. Neal, J. Newman, M. Nunn, R. Pickup, N. Reynard, C. Sullivan, J. Sumpter, and R. Williams, 2009: The British river of the future: how climate change and human activity might affect two contrasting river ecosystems in England. Science of the Total Environment, 407, 4787-4798.
- Jomelli, V., D. Brunstein, D. Grancher, and P. Pech, 2007: Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Climatic Change, 85(1-2), 119-137.
- Jomelli, V., D. Brunstein, M. Déqué, M. Vrac, and D. Grancher, 2009: Impacts of future climatic change (2070-2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps). Climatic Change, 97(1), 171-191.
- Jonkeren, O.E., 2009: Adaptation to Climate Change in Inland Waterway Transport. Diss. Ph.D., Vrije Universiteit, Amsterdam, Netherlands, 164 pp.
- Jonkeren, O., P. Rietveld, and J. van Ommeren, 2007: Climate change and inland waterway transport; welfare effects of low water levels on the river Rhine. Journal of Transport Economics and Policy, 41(3), 387-411.
- Jonkeren, O., B. Jourquin, and P. Rietveld, 2011: Modal-split effects of climate change: the effect of low water levels on the competitive position of inland waterway transport in the River Rhine area. *Transportation Research Part A: Policy & Practice*, 45(10), 1007-1019.
- Jönsson, A.M., G. Appelberg, S. Harding, and L. Bärring, 2009: Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, *Ips typographus*. Global Change Biology, 15(2), 486-499.
- Jönsson, A.M., S. Harding, P. Krokene, H. Lange, A. Lindelöw, B. Økland, H.P. Ravn, and L.M. Schroeder, 2011: Modelling the potential impact of global warming on *lps typographus* voltinism and reproductive diapause. *Climatic Change*, 109(3-4), 695-718.
- Jonsson, B. and N. Jonsson, 2009: A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology, 75(10), 2381-2447.
- Jonzén, N., A. Lindén, T. Ergon, E. Knudsen, J.O. Vik, D. Rubolini, D. Piacentini, C. Brinch, F. Spina, L. Karlsson, M. Stervander, A. Andersson, J. Waldenström, A. Lehikoinen, E. Edvardsen, R. Solvang, and N.C. Stenseth, 2006: Rapid advance of spring arrival dates in long-distance migratory birds. Science, 312(5782), 1959-1961.
- Jordà, G., D. Gomis, and M. Marcos, 2012: Comment on "Storm surge frequency reduction in Venice under climate change" by Troccoli et al. Climatic Change, 113(3-4), 1081-1087.
- JRC, 2008: Forest Fires in Europe 2007. JRC Scientific and Technical Reports, Report No. 8, EUR 23492 EN – 2008, European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability, Publications Office of the European Union, Luxembourg, Luxembourg, 77 pp.
- JRC and EEA, 2010: The European Environment, State and Outlook 2010. Soil. European Commission, Joint Research Centre (JRC) and European Environment Agency (EEA), Publications Office of the European Union, Luxembourg, 44 pp.
- Kabat, P., L.O. Fresco, M.J.F. Stive, C.P. Veerman, J.S.L.J. van Alphen, B.W.A.H. Parmet, W. Hazeleger, and C.A. Katsman, 2009: Dutch coasts in transition. *Nature Geosciences*, 2, 450-452.
- Karaca, M. and R.J. Nicholls, 2008: Potential implications of accelerated sea-level rise for Turkey. *Journal of Coastal Research*, 24(2), 288-298.
- Katsman, C., A. Sterl, J. Beersma, H. van den Brink, J. Church, W. Hazeleger, R. Kopp,
 D. Kroon, J. Kwadijk, R. Lammersen, J. Lowe, M. Oppenheimer, H. Plag, J. Ridley,
 H. von Storch, D. Vaughan, P. Vellinga, L. Vermeersen, R. van de Wal, and R.
 Weisse, 2011: Exploring high-end scenarios for local sea level rise to develop
 flood protection strategies for a low-lying delta: the Netherlands as an example.
 Climatic Change, 109, 617-645.
- Kay, A.L., S.M. Crooks, P. Pall, and D.A. Stone, 2011: Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: a catchmentbased study. *Journal of Hydrology*, 406(1-2), 97-112.
- Keenan, T., J. Maria Serra, F. Lloret, M. Ninyerola, and S. Sabate, 2011: Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO₂ matters! Global Change Biology, 17(1), 565-579.
- Keith, S.A., A.C. Newton, R.J.H. Herbert, M.D. Morecroft, and C.E. Bealey, 2009: Non-analogous community formation in response to climate change. *Journal for Nature Conservation*, 17(4), 228-235.

Kersebaum, K.C., A.S. Nain, C. Nendel, M. Gandorfer, and M. Wegehenkel, 2008: Simulated effect of climate change on wheat production and nitrogen management at different sites in Germany. *Journal of Agrometeorology*, 10, 266-273.

- Keskitalo, E.C.H., 2010: The Development of Adaptation Policy and Practice in Europe: Multi-Level Governance of Climate Change. Springer, Dordrecht, Netherlands, 376 pp.
- Khaledian, M.R., J.C. Mailhol, P. Ruelle, I. Mubarak, and S. Perret, 2010: The impacts of direct seeding into mulch on the energy balance of crop production system in the SE of France. Soil and Tillage Research, 106(2), 218-226.
- Kilpeläinen, M. and H. Summala, 2007: Effects of weather and weather forecasts on driver behaviour. *Transportation Research*, 10(4), 288-299.
- Kint, V., W. Aertsen, M. Campioli, D. Vansteenkiste, A. Delcloo, and B. Muys, 2012: Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901-2008. Climatic Change, 115, 343-363.
- Kjellström, E., G. Nikulin, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. *Tellus A, Series A*, 63A(1), 24-40, doi: 10.1111/j.1600-0870.2010.00475.x.
- Kjellstrom, T., R.S. Kovats, S.J. Lloyd, T. Holt, and R.S. Tol, 2009: The direct impact of climate change on regional labor productivity. Archives of Environmental and Occupational Health, 64(4), 217-227.
- Klaus, M., A. Holsten, P. Hostert, and J.P. Kropp, 2011: Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261(11), 1799-1810.
- Klijn, F., N. Asselman, and H. Van Der Most, 2009: Compartmentalisation: flood consequence reduction by splitting up large polder areas. *Journal of Flood Risk Management*, 3, 3-17.
- Klik, A. and J. Eitzinger, 2010: Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. *Journal of Agricultural Science*, 148, 529-541.
- Kløve, B., P. Ala-aho, G. Bertrand, Z. Boukalova, A. Ertürk, N. Goldscheider, J. Ilmonen, N. Karakaya, H. Kupfersberger, J. Kværner, A. Lundberg, M. Mileusnić, A. Moszczynska, T. Muotka, E. Preda, P. Rossi, D. Siergieiev, J. Šimek, P. Wachniew, V. Angheluta, and A. Widerlund, 2011: Groundwater dependent ecosystems. Part I: hydroecological status and trends. *Environmental Science and Policy*, 14(7), 770-781.
- Koca, D., B. Smith, and M. Sykes, 2006: Modelling regional climate change effects on potential natural ecosystems in Sweden. *Climatic Change*, 78, 381-406.
- Koch, H. and S. Vögele, 2009: Dynamic modeling of water demand, water availability and adaptation strategies for power plants to global change. *Ecological Economics*, 68(7), 2031-2039.
- Koetse, M.J. and P. Rietveld, 2009: Impact of climate change and weather on transport: an overview of empirical findings. *Transportation Research*, 14(3), 205-221.
- Koutroulis, A.G., A. Vrochidou, and I.K. Tsanis, 2010: Spatiotemporal characteristics of meteorological drought for the Island of Crete. *Journal of Hydrometeorology*, 12(2), 206-226, doi: 10.1175/2010JHM1252.1.
- Koutsias, N., M. Arianoutsou, A.S. Kallimanis, G. Mallinis, J.M. Halley, and P. Dimopoulos, 2012: Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agricultural and Forest Meteorology, 156, 41-53.
- **Kovats**, R.S. and S. Hajat, 2008: Heat stress and public health: a critical review. *Annual Review of Public Health*, **29**, 41-55.
- Kreienkamp, F., A. Spekat, and W. Enke, 2010: Stationarity of atmospheric waves and blocking over Europe – based on a reanalysis dataset and two climate scenarios. *Theoretical and Applied Climatology*, **102(1-2)**, 205-212, doi:10.1007/ s00704-010-0261-3.
- Krekt, A.H., T.J. van der Laan, R.A.E. van der Meer, B. Turpijn, O.E. Jonkeren, A. van der Toorn, E. Mosselman, J. van Meijeren, and T. Groen, 2011: Climate Change and Inland Waterway Transport: Impacts on the Sector, the Port of Rotterdam and Potential Solutions. National Research Programme Knowledge for Climate/ Nationaal Onderzoekprogramma Kennis voor Klimaat (KvK), Knowledge for Climate Programme Office Secretariat: c/o Utrecht University, Utrecht, Netherlands, 74 pp.
- Kriegler, E., B.C. O'Neill, S. Hallegatte, T. Kram, R.H. Moss, R. Lempert, and T.J. Wilbanks, 2010: Socio-Economic Scenario Development for Climate Change Analysis. CIRED Working Paper, DT/WPNo 2010-23, Centre International de Recherche sur l'Environnement et le Développement (CIRED), CIRED, Nogent-sur-Marne, France, 35 pp.

- Kristensen, K., K. Schelde, and J.E. Olesen, 2011: Winter wheat yield response to climate variability in Denmark. *Journal of Agricultural Science*, 149(1), 33-47.
- Kuhlicke, C., A. Steinführer, C. Begg, C. Bianchizza, M. Bründl, M. Buchecker, B. De Marchi, M. Di Masso Tarditti, C. Höppner, B. Komac, L. Lemkow, J. Luther, S. Mccarthy, L. Pellizzoni, O. Renn, A. Scolobig, M. Supramaniam, S. Tapsell, G. Wachinger, G. Walker, R. Whittle, M. Zorn, and H. Faulkner, 2011: Perspectives on social capacity building for natural hazards: outlining an emerging field of research and practice in Europe. Environmental Science and Policy, 14(7), 804-814.
- Kundzewicz, Z.W., I. Pińskwar, and G.R. Brakenridge, 2013: Large floods in Europe, 1985-2009. Hydrological Sciences Journal, 58(1), 1-7.
- Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. *International Journal of Climatology*, 29, 2283-2297.
- Kwadijk, J.C.J., M. Haasnoot, J.P.M. Mulder, M.M.C. Hoogvliet, A.B.M. Jeuken, R.A.A. van der Krogt, N.G.C. van Oostrom, H.A. Schelfhout, E.H. van Velzen, H. van Waveren, and M.J.M. de Wit, 2010: Using adaptation tipping points to prepare for climate change and sea level rise, a case study in the Netherlands. Wiley Interdisciplinary Reviews: Climate Change, 1(5), 729-740.
- Ladanyi, M., 2008: Risk methods and their applications in agriculture. Applied Ecology and Environmental Research, 6(1), 147-164.
- Lake, I.R., I.A. Gillespie, G. Bentham, G.L. Nichols, C. Lane, G.K. Adak, and E.J. Threlfall, 2009: A re-evaluation of the impact of temperature and climate change on foodborne illness. *Epidemiology and Infection*, 137(11), 1538-1547.
- Lal, R., J.A. Delgado, P.M. Groffman, N. Millar, C. Dell, and A. Rotz, 2011: Management to mitigate and adapt to climate change. *Journal of Soil and Water Conservation*, 66(4), 276-285.
- Lamond, J.E., D.G. Proverbs, and F.N. Hammond, 2009: Accessibility of flood risk insurance in the UK: confusion, competition and complacency. *Journal of Risk Research*, 12(6), 825-841.
- Langmead, O., A. McQuatters-Gollop, and L.D. Mee (eds.), 2007: European Lifestyles and Marine Ecosystems: Exploring Challenges for Managing Europe's Seas. University of Plymouth Marine Institute, Plymouth, UK, 44 pp.
- Lankester, P. and P. Brimblecombe, 2010: Predicting future indoor climate at Knole. Views, 47, 71-73.
- Lasda, O., A. Dikou, and E. Papapanagiotou, 2010: Flash flooding in Attika, Greece: climatic change or urbanization? Ambio, 39, 608-611.
- Lasserre, F. and S. Pelletier, 2011: Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners' intentions. *Journal of Transport Geography*, 19, 1465-1473.
- Lavalle, C., F. Micale, T.D. Houston, A. Camia, R. Hiederer, C. Lazar, C. Conte, G. Amatulli, and G. Genovese, 2009: Climate change in Europe. 3. Impact on agriculture and forestry. A review. Agronomy for Sustainable Development, 29(3), 433-446.
- Lawrence, D. and H. Hisdal, 2011: Hydrological Projections for Floods in Norway Under a Future Climate. NVE Report No. 2011-5, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway, 47 pp.
- Le Floc'h, P.L., J. Poulard, O. Thébaud, F. Blanchard, J. Bihel, and F. Steinmetz, 2008: Analyzing the market position of fish species subject to the impact of long-term changes: a case study of French fisheries in the Bay of Biscay. *Aquatic Living Resources*, 21(3), 307-316.
- Leander, R., T.A. Buishand, B.J.J.M. van den Hurk, and M.J.M. de Wit, 2008: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. *Journal of Hydrology*, 351(3-4), 331-343.
- Lee, H.C., R. Walker, S. Haneklaus, L. Philips, G. Rahmann, and E. Schnug, 2008: Organic farming in Europe: a potential major contribution to food security in a scenario of climate change and fossil fuel depletion. *Landbauforschung Volkenrode*, 58(3), 145-151.
- Lejeusne, C., P. Chevaldonne, C. Pergent-Martini, C.F. Boudouresque, and T. Perez, 2009: Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. *Trends in Ecology and Evolution*, 25(4), 250-260.
- **Lemoine**, N., H. Schaefer, and K. Böhning-Gaese, 2007a: Species richness of migratory birds is influenced by global climate change. *Global Ecology and Biogeography*, **16(1)**, 55-65.
- Lemoine, N., H. Bauer, M. Peintinger, and K. Böhning-Gaese, 2007b: Effects of climate and land-use change on species abundance in a Central European bird community. *Conservation Biology*, 21(2), 495-503.
- Lemonsu, A., R. Kounkou-Arnaud, J. Desplat, J. Salagnac, and V. Masson, 2013: Evolution of the Parisian urban climate under a global changing climate. Climatic Change, 116(3-4), 679-692.

Lenderink, G. and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. *Nature Geoscience*, **1(8)**, 511-514

- Lennert, M. and J. Robert, 2010: The territorial futures of Europe: 'Trends', 'Competition' or 'Cohesion'. Futures, 42(8), 833-845.
- Lenoir, J., J.C. Gegout, P.A. Marquet, P. de Ruffray, and H. Brisse, 2008: A significant upward shift in plant species optimum elevation during the 20th century. *Science*, **320**(5884), 1768-1771.
- Lenoir, S., G. Beaugrand, and É. Lecuyer, 2011: Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. *Global Change Biology*, **17(1)**, 115-129.
- **Letourneau**, A., P.H. Verburg, and E. Stehfest, 2012: A land-use systems approach to represent land-use dynamics at continental and global scales. *Environmental Modelling and Software*, **33**, 61-79.
- **Levinsky**, I., F. Skov, J. Svenning, and C. Rahbek, 2007: Potential impacts of climate change on the distributions and diversity patterns of European mammals. *Biodiversity and Conservation*, **16(13)**, 3803-3816.
- Liberloo, M., S. Luyssaert, V. Bellassen, S.N. Djomo, M. Lukac, C. Calfapietra, I.A. Janssens, M.R. Hoosbeek, N. Viovy, G. Churkina, G. Scarascia-Mugnozza, and R. Ceulemans, 2010: Bio-energy retains its mitigation potential under elevated CO₂. Public Library on Science, 5(7), e11648, doi:10.1371/journal.pone. 0011648.
- **Linard**, C., N. Poncon, D. Fontenille, and E.F. Lambin, 2009: Risk of malaria reemergence in Southern France: testing scenarios with a multiagent simulation model. *EcoHealth*, **6(1)**, 135-147.
- Lindgren, J., D.K. Johnsson, and A. Carlsson-Kanyama, 2009: Climate adaptation of railways: lessons from Sweden. European Journal of Transport and Infrastructure Research, 9(2), 164-181.
- Lindner, M., M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, S. Delzon, P. Corona, M. Kolström, M.J. Lexer, and M. Marchetti, 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709.
- Lindsay, S.W., D.G. Hole, R.A. Hutchinson, S.A. Richards, and S.G. Willis, 2010: Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. *Malaria Journal*, 9(1), 70-78.
- **Linnerud**, K., T.H. Mideska, and G.S. Eskeland, 2011: The impact of climate change on nuclear power supply. *The Energy Journal*, **32(1)**, 149-168.
- **Lionello**, P., M.B. Galati, and E. Elvini, 2012: Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. *Physics and Chemistry of the Earth*, **40-41**, 86-92.
- Liu, M. and J. Kronbak, 2010: The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. *Journal of Transport Geography*, 18, 434-444.
- Liu, Y., R.A. Kahn, A. Chaloulakou, and P. Koutrakis, 2009: Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations. Atmospheric Environment, 43, 3310-3318.
- **Lobell**, D.B., W. Schlenker, and J. Costa-Roberts, 2011: Climate trends and global crop production since 1980. *Science*, **333(6042)**, 616-620.
- Long, S.P., E.A. Ainsworth, A.D.B. Leakey, J. Nosberger, and D.R. Ort, 2006: Food for thought: lower-than-expected crop yield stimulation with rising CO₂ concentrations. *Science*, 312(5782), 1918-1921.
- Lopez Saez, J., C. Corona, M. Stoffel, and F. Berger, 2013: Climate change increases frequency of shallow spring landslides in French Alps. Geology, 41(5), 619-622.
- Lorz, C., C. Furst, Z. Galiz, D. Matijasic, V. Podrazky, N. Potocic, P. Simoncic, M. Strauch, H. Vacik, and F. Makeschin, 2010: GIS-based probability assessment of natural hazards in forested landscapes of Central and South-Eastern Europe. *Environmental Management*, 46, 920-930.
- Lowe, D., K.L. Ebi, and B. Forsberg, 2011: Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. International Journal of Environmental Research and Public Health, 8(12), 4613-4648
- Lowe, J.A., T.P. Howard, A. Pardaens, J. Tinker, J. Holt, S. Wakelin, G. Milne, J. Leake, J. Wolf, K. Horsburgh, T. Reeder, G. Jenkins, J. Ridley, S. Dye, and S. Bradley, 2009: UK Climate Projections Science Report: Marine and Coastal Projections. Met Office Hadley Centre, Exeter, UK, 97 pp.
- Luck, J., M. Spackman, A. Freeman, P. Trebicki, W. Griffiths, K. Finlay, and S. Chakraborty, 2011: Climate change and diseases of food crops. *Plant Pathology*, 60(1), 113-121.

Ludwig, R., R. Roson, C. Zografos, and G. Kallis, 2011: Towards an inter-disciplinary research agenda on climate change, water and security in Southern Europe and neighboring countries. *Environmental Science and Policy*, 14(7), 794-803.

- Lugeri, N., Z. Kundzewicz, E. Genovese, S. Hochrainer, and M. Radziejewski, 2010: River flood risk and adaptation in Europe – assessment of the present status. *Mitigation and Adaptation Strategies for Global Change*, 15(7), 621-639.
- Lung, T., C. Lavalle, R. Hiederer, A. Dosio, and L.M. Bouwer, 2012: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Global Environmental Change, 23(2), 522-536.
- Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. *Science*, 303(5663), 1499-1503.
- Lyons, S., K. Mayor, and R. Tol, 2009: Holiday destinations: understanding the travel choices of Irish tourists. *Tourism Management*, 30(5), 683-692.
- Maaskant, B., S.N. Jonkman, and L.M. Bouwer, 2009: Future risk of flooding: an analysis of changes in potential loss of life in South Holland (the Netherlands). *Environmental Science & Policy*, 12(2), 157-169.
- MacKenzie, B.R., H. Gislason, C. Mollmann, and F.W. Koster, 2007: Impact of 21st century climate change on the Baltic Sea fish community and fisheries. *Global Change Biology*, 13(7), 1348-1367.
- Macleod, C.J.A., P.D. Falloon, R. Evans, and P.M. Haygarth, 2012: Chapter 2: The effects of climate change on the mobilization of diffuse substances from agricultural systems. In: Advances in Agronomy, Vol. 115 [Sparks, D.L. (ed.)]. Elsevier Science and Technology/Academic Press, Waltham, MA, USA, pp. 41-47.
- Madgwick, J.W., J.S. West, R.P. White, M.A. Semenov, J.A. Townsend, J.A. Turner, and B.D.L. Fitt, 2011: Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130(1), 117-131.
- Magnan, A., B. Garnaud, R. Billé, F. Gemenne, and S. Hallegatte, 2009: The Future of the Mediterranean: From Impacts of Climate Change to Adaptation Issues. Summary Report produced at the request of the Sustainable Development General Commission (CGDD) of the French Ministry of Ecology, Energy, Sustainable Development and Territorial Development (MEEDDAT) by the Institut du Développement Durable et des Relations Internationales (IDDRI) in collaboration with the Centre International de Recherche sur l'Environnement et le Développement (CIRED), IDDRI, Paris, France, 42 pp.
- Majone, B., C.I. Bovolo, A. Bellin, S. Blenkinsop, and H.J. Fowler, 2012: Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain). Water Resources Research, 48(1), W01512, doi:10.1029/ 2011WR010985.
- Malheiro, A.C., J.A. Santos, H. Fraga, and J.G. Pinto, 2010: Climate change scenarios applied to viticultural zoning in Europe. *Climate Research*, **43**, 163-177.
- Mandryk, M., P. Reidsma, and M. Ittersum, 2012: Scenarios of long-term farm structural change for application in climate change impact assessment. Landscape Ecology, 27(4), 509-527.
- Mantyka-pringle, C.S., T.G. Martin, and J.R. Rhodes, 2012: Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. *Global Change Biology*, **18(4)**, 1239-1252, doi: 10.1111/j.1365-2486.2011.02593.x.
- Marcais, B. and M. Desprez-Loustau, 2007: Le réchauffement climatique a-t-il un impact sur les maladies forestières? In: Forêts et Milieux Naturels Face aux Changements Climatiques. Rendez-vous techniques de l'ONF, hors-série n° 3, Décembre 2007, French Government Office National des Forêts (ONF), Paris, France, pp. 47-52.
- Marcos-Lopez, M., P. Gale, B.C. Oidtmann, and E.J. Peeler, 2010: Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. *Transboundary and Emerging Diseases*, 57(5), 293-304.
- Marker, M., L. Angeli, L. Bottai, R. Costantini, R. Ferrari, L. Innocenti, and G. Siciliano, 2008: Assessment of land degradation susceptibility by scenario analysis: a case study in Southern Tuscany, Italy. Geomorphology, 93(1-2), 120-129.
- Marmot, M., J. Allen, R. Bell, E. Bloomer, P. Goldblatt, and Consortium for the European Review of Social Determinants of Health and the Health Divide, 2012: WHO European review of social determinants of health and the health divide. Lancet, 380(9846), 1011-1029.
- Marques, S., J.G. Borges, J. Garcia-Gonzalo, F. Moreira, J.M.B. Carreiras, M.M. Oliveira, A. Cantarinha, B. Botequim, and J.M.C. Pereira, 2011: Characterization of wildfires in Portugal. European Journal of Forest Research, 130(5), 775-784.
- Mavrogianni, A., P. Wilkinson, M. Davies, P. Biddulph, and E. Oikonomou, 2012: Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. *Building and Environment*, 55, 117-130.

Mazaris, A.D., A.D. Papanikolaou, M. Barbet-Massin, A.S. Kallimanis, F. Jiguet, D.S. Schmeller, and J.D. Pantis, 2013: Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 Network for four birds of prey. PLoS ONE, 8(3), e59640, doi:10.1371/journal.pone.0059640.

- McCarthy, M., M. Best, and R. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophysical Research Letters, 37(9), L09705, doi:10.1029/2010GL042845.
- McColl, L., E. Palin, H. Thornton, D. Sexton, R. Betts, and K. Mylne, 2012: Assessing the potential impact of climate change on the UK's electricity network. *Climatic Change*, 115(3-4), 821-835.
- McGrath, J. and D.B. Lobell, 2011: An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. *Global Change Biology*, **17**, 2689-2696.
- McHugh, M., 2007: Short-term changes in upland soil erosion in England and Wales: 1999 to 2002. *Geomorphology*, **86(1-2)**, 204-213.
- McInnes, K.L., T.A. Erwin, and J.M. Bathols, 2011: Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmospheric Science Letters, 12(4), 325-333.
- **Mechler**, R., S. Hochrainer, A. Aaheim, H. Salen, and A. Wreford, 2010: Modelling economic impacts and adaptation to extreme events: insights from European case studies. *Mitigation and Adaptation Strategies for Global Change*, **15(7)**, 737-762.
- Medlock, J.M. and A.G.C. Vaux, 2013: Colonization of UK coastal realignment sites by mosquitoes: implications for design, management, and public health. *Journal* of Vector Ecology, 38(1), 53-62.
- Medri, S., E. Banos de Guisasola, and S. Gualdi, 2012: Overview of the Main International Climate Services. CMCC Research Paper, Issue RP0134, Euro-Mediterranean Center on Climate Change, Lecce, Italy, 109 pp.
- Medri, S., S. Venturini, and S. Castellari, 2013: Overview of Key Climate Change Impacts, Vulnerabilities and Adaptation Action in Italy. CMCC Research Papers, Issue RP0178, Euro-Mediterranean Center on Climate Change, Lecce, Italy, 75 pp.
- Melchiorre, C. and P. Frattini, 2012: Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. *Climatic Change*, 113(2), 413-436.
- Meleux, F., F. Solmon, and F. Giorgi, 2007: Increase in summer European ozone amounts due to climate change. Atmospheric Environment, 41(35), 7577-7587.
- Menendez, M. and P.L. WoodWorth, 2010: Changes in extreme high water levels based on quasi global tide-gauge data set. *Journal of Geophysical Research*, 115(C10), C10011, doi:10.1029/2009JC005997.
- Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, P. Bissolli, O. Braslavská, A. Briede, F.M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Måge, A. Mestre, Ø. Nordli, J. Peñuelas, P. Pirinen, V. Remišová, H. Scheifinger, M. Striz, A. Susnik, A.J.H. van Vliet, F.-E. Wielgolaski, S. Zach, and A. Zust, 2006: European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969-1976.
- Metzger, M.J. and M.D.A. Rounsevell, 2011: A need for planned adaptation to climate change in the wine industry. *Environmental Research Letters*, 6(3), 031001, doi:10.1088/1748-9326/6/3/031001.
- Metzger, M.J., R.G.H. Bunce, R.H.G. Jongman, C.A. Mücher, and J.W. Watkins, 2005: A climatic stratification of the environment of Europe. *Global Ecology and Biogeography*, **14(6)**, 549-563.
- Metzger, M.J., D. Schroter, R. Leemans, and W. Cramer, 2008: A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. *Regional Environmental Change*, 8(3), 91-107.
- Michelozzi, P., G. Accetta, M. De Sario, D. D'Ippoliti, C. Marino, M. Baccini, A. Biggeri, H.R. Anderson, K. Katsouyanni, F. Ballester, L. Bisanti, E. Cadum, B. Forsberg, F. Forastiere, P.G. Goodman, A. Hojs, U. Kirchmayer, S. Medina, A. Paldy, C. Schindler, J. Sunyer, C.A. Perucci, and PHEWE Collaborative Group, 2009: High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. American Journal of Respiratory and Critical Care Medicine, 179(5), 383-389.
- Mickwitz, P., S. Beck, A. Jensenm, A.B. Pedersen, C. Görg, M. Melanen, N. Ferrand, C. Kuhlicke, W. Kuindersma, M. Máñez, H. Reinert, and S. Bommel, 2009: Climate policy integration as a necessity for an efficient climate policy. *IOP Conference Series: Earth and Environmental Science*, 6, 582017, doi:10.1088/1755-1307/6/58/582017.

- Mieszkowska, N., M.J. Genner, S.J. Hawkins, and D.W. Sims, 2009: Chapter 3. Effects of climate change and commercial fishing on Atlantic cod *Gadus morhua*. In: *Advances in Marine Biology, Vol. 56* [Sims, D.W. (ed.)]. Elsevier Science and Technology/Academic Press, Waltham, MA, USA, pp. 213-273.
- Milad, M., H. Schaich, M. Bürgi, and W. Konold, 2011: Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. Forest Ecology and Management, 261(4), 829-843.
- Millar, C.I., N.L. Stephenson, and S.L. Stephens, 2007: Climate change and forests of the future: managing in the face of uncertainty. *Ecological Applications*, 17(8), 2145-2151.
- Milner, J., M. Davies, and P. Wilkinson, 2012: Urban energy, carbon management (low carbon cities) and co-benefits for human health. *Current Opinion in Environmental Sustainability*, 4(4), 338-404.
- Ministry of Agriculture and Forestry, 2009: Evaluation of the Implementation of Finland's National Strategy for Adaptation to Climate Change 2009. Ministry of Agriculture and Forestry, Helsinki, Finland, 44 pp.
- Miraglia, M., H.J.P. Marvin, G.A. Kleter, P. Battilani, C. Brera, E. Coni, F. Cubadda, L. Croci, B. De Santis, S. Dekkers, L. Filippi, R.W.A. Hutjes, M.Y. Noordam, M. Pisante, G. Piva, A. Prandini, L. Toti, G.J. van den Born, and A. Vespermann, 2009: Climate change and food safety: an emerging issue with special focus on Europe. Food and Chemical Toxicology, 47(5), 1009-1021.
- Miranda, A.I., E. Marchi, M. Ferretti, and M.M. Millan, 2009: Forest fires and air quality issues in Southern Europe. In: *Developments in Environmental Science* [Bytnerowicz, A., M. Arbaugh, A. Riebau, and C. Andersen (eds.)]. Elsevier, Amsterdam, Netherlands, pp. 209-231.
- Mirasgedis, S., Y. Sarafidis, E. Georgopoulou, V. Kotroni, K. Lagouvardos, and D.P. Lalas, 2007: Modelling framework for estimating impacts of climate change on electricity demand at regional level: case of Greece. *Energy Conversion and Management*, 48(5), 1737-1750.
- Mirasgedis, S., E. Georgopoulou, Y. Sarafidis, K. Papagiannaki, and D.P. Lalas, 2013: The impact of climate change on the demand pattern of bottled water and non-alcoholic beverages. *Business Strategy and the Environment*, doi: 10.1002/bse.1782.
- Mitchell, T.D., T.R. Carter, P.D. Jones, M. Hulme, and M. New, 2004: A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901-2000) and 16 Scenarios (2001-2100). Tyndall Centre Research Working Paper 55, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK, 25 pp.
- Moen, J. and P. Fredman, 2007: Effects of climate change on alpine skiing in Sweden. Journal of Sustainable Tourism, 15(4), 418-437.
- Mokrech, M., R. Nicholls, J. Richards, C. Henriques, I. Holman, and S. Shackley, 2008: Regional impact assessment of flooding under future climate and socioeconomic scenarios for East Anglia and North West England. *Climatic Change*, 90(1), 31-55.
- Moller, A.P., D. Rubolini, and E. Lehikoinen, 2008: Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the United States of America, 105(42), 16195-16200.
- Molnar, J.L., R.L. Gamboa, C. Revenga, and M.D. Spalding, 2008: Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9), 485-492.
- Montoya, J.M. and D. Raffaelli, 2010: Climate change, biotic interactions and ecosystem services. *Philosophical Transactions of the Royal Society B*, 365(1549), 2013-2018.
- **Mooij**, W.M., J.H. Janse, L.N. De Senerpont Domis, S. Hülsmann, and B.W. Ibelings, 2007: Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. *Hydrobiologica*, **584(1)**, 443-454.
- Morán-López, R., J.L. Pérez-Bote, E. da Silva, and A.B.P. Casildo, 2012: Hierarchical large-scale to local-scale influence of abiotic factors in summer-fragmented Mediterranean rivers: structuring effects on fish distributions, assemblage composition and species richness. *Hydrobiologia*, 696(1), 137-158.
- Moreira, F., O. Viedma, M. Arianoutsou, T. Curt, N. Koutsias, E. Rigolot, A. Barbati, P. Corona, P. Vaz, G. Xanthopoulos, F. Mouillot, and E. Bilgili, 2011: Landscape wildfire interactions in southern Europe: implications for landscape management. *Journal of Environmental Management*, 92(10), 2389-2402.
- Moreno, A., 2010: Mediterranean tourism and climate (change): a survey-based study. *Tourism and Hospitality Planning & Development*, **7(3)**, 253-265.
- **Moreno**, A. and B. Amelung, 2009: Climate change and tourist comfort on Europe's beaches in summer: a reassessment. *Coastal Management*, **37(6)**, 550-568.

- Moriondo, M., M. Bindi, Z.W. Kundzewicz, M. Szwed, A. Chorynski, P. Matczak, M. Radziejewski, D. McEvoy, and A. Wreford, 2010a: Impact and adaptation opportunities for European agriculture in response to climatic change and variability. *Mitigation and Adaptation Strategies for Global Change*, 15(7), 657-679
- **Moriondo**, M., C. Pacini, G. Trombi, C. Vazzana, and M. Bindi, 2010b: Sustainability of dairy farming system in Tuscany in a changing climate. *European Journal of Agronomy*, **32(1)**, 80-90.
- **Moriondo**, M., M. Bindi, C. Fagarazzi, R. Ferrise, and G. Trombi, 2011: Framework for high-resolution climate change impact assessment on grapevines at a regional scale. *Regional Environmental Change*, **11(3)**, 553-567.
- Mouillot, D., D.R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, S. Lavergne, S. Lavorel, N. Mouquet, C.E. Paine, J. Renaud, and W. Thuiller, 2013: Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11(5), e1001569, doi:10.1371/journal.pbio.1001569.
- Mullan, D., D. Favis-Mortlock, and R. Fealy, 2012: Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. *Agricultural and Forest Meteorology*, **156**, 18-30.
- Musshoff, O., M. Odening, and W. Xu, 2011: Management of climate risks in agriculture – will weather derivatives permeate? Applied Economics, 43(9), 1067-1077.
- **Mustonen**, T. and K. Mustonen, 2011a: *Eastern Sámi Atlas*. Snowchange Cooperative, Helsinki, Finland, 331 pp.
- Mustonen, T. and K. Mustonen, 2011b: Drowning Reindeers, Drowning Homes Indigenous Saami and Hydroelectricity in Sompio, Finland. Snowchange Cooperative, Helsinki, Finland, 115 pp.
- Nabuurs, G.-J., M. Lindner, P.J. Verkerk, K. Gunia, P. Deda, R. Michalak, and G. Grassi, 2013: First signs of carbon sink saturation in European forest biomass. *Nature Climate Change*, **3(9)**, 792-796.
- Najac, J., C. Lac, and L. Terray, 2011: Impact of climate change on surface winds in France using a statistical-dynamical downscaling method with mesoscale modelling. *International Journal of Climatology*, 31(3), 415-430.
- Navarra, A. and L. Tubiana (eds.), 2013: Regional Assessment of Climate Change in the Mediterranean. Volume 3: Case Studies. Springer Science, Dordrecht, Netherlands, 225 pp.
- Nicholls, R., P. Wong, V. Burkett, C. Woodroffe, and J. Hay, 2008: Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustainability Science, 3(1), 89-102.
- **Nicholls**, S. and B. Amelung, 2008: Climate change and tourism in Northwestern Europe: impacts and adaptation. *Tourism Analysis*, **13(1)**, 21-31.
- Nokkala, M., P. Leviäkangas, and K. Oiva (eds.), 2012: *The Costs of Extreme Weather for the European Transport System.* EWENT Project D4, Vtt Technology 36, VTT Technical Research Centre of Finland, Espoo, Finland, 92 pp.
- Nolan, P., P. Lynch, R. Mcgrath, T. Semmler, and S. Wang, 2012: Simulating climate change and its effect on the the wind energy resource of Ireland. *Wind Energy*, 15, 593-608.
- OECD, 2007: Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management. Organisation for Economic Co-operation and Development (OECD), Paris, France, 127 pp.
- Okruszko, T., H. Duel, M. Acreman, M. Grygoruk, M. Flörke, and C. Schneider, 2011: Broad-scale ecosystem services of European wetlands – overview of the current situation and future perspectives under different climate and water management scenarios. *Hydrological Sciences Journal*, **56(8)**, 1501-1517.
- Olesen, J.E., M. Trnka, K.C. Kersebaum, A.O. Skjelvåg, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra, and F. Micale, 2011: Impacts and adaptation of European crop production systems to climate change. *European Journal of Agronomy*, 34(2), 96-112
- Oliver, R.J., J.W. Finch, and G. Taylor, 2009: Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO₂ and drought on water use and the implications for yield. *GCB Bioenergy*, **1(2)**, 97-114
- Olonscheck, M., A. Holsten, and J. Kropp, 2011: Heating and cooling demand and related emissions of the German residential building stock under climate change. *Energy Policy*, **39**, 4795-4806.
- Ommer, R., I.A. Perry, K. Cochrane, and P. Cury (eds.), 2011: World Fisheries: A Social-Ecological Analysis. Wiley-Blackwell, Chichester, UK, 440 pp.
- Oort, P.A.J., B.G.H. Timmermans, and A.C.P.M. van Swaaij, 2012: Why farmers' sowing dates hardly change when temperature rises. *European Journal of Agronomy*, 40, 102-111.

OSPAR, 2010: Chapter 12: Regional summaries. In: Quality Status Report 2010.
OSPAR Commission, London, UK, pp. 150-161.

- Pahl-Wostl, C., 2007: Transitions towards adaptive management of water facing climate and global change. Water Resources Management, 21(1), 49-62.
- Paiva, R.C.D., W. Collischonn, E.B.C. Schettini, J. Vidal, F. Hendrickx, and A. Lopez, 2011: The case studies. In: *Modelling The Impact of Climate Change on Water Resources* [Fung, F., A. Lopez, and M. New (eds.)]. John Wiley-Blackwell, Chichester, UK, pp. 136-182.
- Palahi, M., R. Mavsar, C. Gracia, and Y. Birot, 2008: Mediterranean forests under focus. *International Forestry Review*, 10(4), 676-688.
- Palin, E., H.E. Thornton, C.T. Mathison, R.E. McCarthy, R.T. Clark, and J. Dora, 2013: Future projections of temperature-related climate change impacts on the railway network of Great Britain. Climatic Change, 120(1-2), 71-93.
- Pall, P., T. Aina, D.A. Stone, P.A. Stott, T. Nozawa, A.G.J. Hilberts, D. Lohmann, and M.R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470 (7334), 382-385.
- Paranjothy, S., J. Gallacher, R. Amlôt, G.J. Rubin, L. Page, T. Baxter, J. Wight, D. Kirrage, R. McNaught, and S.R. Palmer, 2011: Psychosocial impact of the summer 2007 flood in England. BMC Public Health, 11, 145, doi:10.1186/1471-2458-11-145.
- Parent, B. and F. Tardieu, 2012: Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194(3), 760-774.
- Pašičko, R., Č. Branković, and Z. Simic, 2012: Assessment of climate change impacts in energy generation from renewable sources in Croatia. *Renewable Energy*, 46, 224-231.
- Paterson, J.S., M.B. Araújo, P.M. Berry, J.M. Piper, and M.D.A. Rounsevell, 2008: Mitigation, adaptation, and the threat to biodiversity. *Conservation Biology*, 22(5), 1352-1355.
- Paterson, R.R.M. and N. Lima, 2010: How will climate change affect mycotoxins in food? Food Research International, 43(7), 1902-1914.
- Pauli, H., M. Gottfried, S. Dullinger, O. Abdaladze, M. Akhalkatsi, J.L. Benito Alonso, G. Coldea, J. Dick, B. Erschbamer, R. Fernández Calzado, D. Ghosn, J.I. Holten, R. Kanka, G. Kazakis, J. Kollár, P. Larsson, P. Moiseev, D. Moiseev, U. Molau, J. Molero Mesa, L. Nagy, G. Pelino, M. Puşcaş, G. Rossi, A. Stanisci, A.O. Syverhuset, J.-P. Theurillat, M. Tomaselli, P. Unterluggauer, L. Villar, P. Vittoz, and G. Grabherr, 2012: Recent plant diversity changes on Europe's mountain summits. Science, 336(6079), 353-355.
- Pausas, J.G. and S. Fernández-Muñoz, 2012: Fire regime changes in the western Mediterranean Basin: from fuel-limited to drought-driven fire regime. *Climatic Change*, 110(1-2), 215-226.
- Pausas, J.G., J. Llovet, A. Rodrigo, and R. Vallejo, 2008: Are wildfires a disaster in the Mediterranean basin? A review. *International Journal of Wildland Fire*, 17(6), 713-723.
- Pejovic, T., V.A. Williams, R.B. Noland, and R. Toumi, 2009: Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays. *Transportation Research Record*, 2139, 97-106.
- Pellizzaro, G., A. Ventura, B. Arca, A. Arca, P. Duce, V. Bacciu, and D. Spano, 2010: Estimating effects of future climate on duration of fire danger season in Sardinia. In: Proceedings of VI International Forest Fire Research Conference, 15-18, November 2010, University of Coimbra, Coimbra, Portugal, Session BP11 Climate and Fire Meteorology [Viegas, D.X. (ed.)]. Organized by the Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI), Conference Secretariat, ADAI, Coimbra, Portugal, 8 pp., www.cnr.it/istituti/ProdottoDella Ricerca.html?cds=016&id=184241.
- **Peltonen-Sainio**, P., L. Jauhiainen, and I.P. Laurila, 2009: Cereal yield trends in northern European conditions: changes in yield potential and its realisation. *Field Crops Research*, **110(1)**, 85-90.
- Peltonen-Sainio, P., L. Jauhiainen, and K. Hakala, 2010: Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. The Journal of Agricultural Science, 149(01), 49-62.
- Perch-Nielsen, S.L., B. Amelung, and R. Knutti, 2010: Future climate resources for tourism in Europe based on the daily Tourism Climatic Index. *Climatic Change*, 103(3-4), 363-381.
- Pereira, M., R. Trigo, C. da Camara, J. Pereira, and S. Leite, 2005: Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25.
- Perez, F.F., X.A. Padin, Y. Pazos, M. Gilcoto, M. Cabanas, P.C. Pardo, M.D. Doval, and L. Farina-Busto, 2010: Plankton response to weakening of the Iberian coastal upwelling. *Global Change Biology*, 16(4), 1258-1267.

Perry, R.I., R.E. Ommer, M. Barange, and F. Werner, 2010: The challenge of adapting marine social-ecological systems to the additional stress of climate change. *Current Opinion in Environmental Sustainability*, 2(5-6), 356-363.

- Peterson, T., P. Scott, and S. Herring, 2012: Explaining extreme events of 2011 from a climate perspective. Bulletin of the American Meteorological Society, 93, 1041-1067.
- Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler, and A. Guisan, 2012: Climatic niche shifts are rare among terrestrial plant invaders. *Science*, 335(6074), 1344-1348.
- Petney, T.N., J. Skuballa, S. Muders, M. Pfäffle, C. Zetlmeisl, and R. Oehme, 2012: The changing distribution patterns of ticks (*Ixodida*) in Europe in relation to emerging tick-borne diseases. *Parasitology Research Monographs*, 3, 151-166.
- Petrow, T., B. Merz, K.E. Lindenschmidt, and A.H. Thieken, 2007: Aspects of seasonality and flood generating circulation patterns in a mountainous catchment in southeastern Germany. *Hydrology and Earth System Sciences*, 11, 1455-1468.
- Petrow, T., J. Zimmer, and B. Merz, 2009: Changes in the flood hazard in Germany through changing frequency and persistence of circulation patterns. *Natural Hazards and Earth System Sciences*, 9(4), 1409-1423.
- Pfenniger, S., S. Hanger, M. Dreyfus, A. Dubel, N. Hernández-Mora, P. Esteve, C. Varela-Ortega, P. Watkiss, and A. Patt, 2010: Report on Perceived Policy Needs and Decision Contexts. MEDIATION Delivery Report, Deliverable 1.1 (Final Draft) Subject to approval by the European Commission, Methodology for Effective Decision-making on Impacts and AdaptaTION (MEDIATION) Research Project, Seventh Framework Programme for Research and Technological Development, European Commission (EC), Brussels, Belguim, 108 pp.
- Philippart, C.J.M., R. Anadon, R. Danovaro, J.W. Dipper, K.F. Drinkwater, S.J. Hawkins, T. Oguz, G. O'Sullivan, and P.C. Reid, 2011: Impacts of climate change on European marine ecosystems: observations, expectations and indicators. *Journal of Experimental Marine Biology and Ecology*, 400, 52-69.
- Pilli-Sihlova, K., P. Aatola, M. Ollikainen, and H. Tuomenvirta, 2010: Climate change and electricity consumption – witnessing increasing or decreasing use and costs? *Energy Policy*, 38(5), 2409-2419.
- Pinto, J.G., U. Ulbrich, G.C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007a: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 29(2-3), 195-210.
- Pinto, J.G., E.L. Fröhlich, G.C. Leckebusch, and U. Ulbrich, 2007b: Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Natural Hazards and Earth System Sciences, 7(1), 165-175.
- Pinto, J.G., C.P. Neuhaus, G.C. Leckebusch, M. Reyers, and M. Kerschgens, 2010: Estimation of wind storm impacts over Western Germany under future climate conditions using a statistical-dynamical downscaling approach. *Tellus A*, 62(2), 188-201.
- Pitois, S.G. and C.J. Fox, 2006: Long-term changes in zooplankton biomass concentration and mean size over the Northwest European shelf inferred from Continuous Plankton Recorder data. *ICES Journal of Marine Science*, 63(5), 785-798.
- Pitt, M., 2008: *The Pitt Review: Lessons Learned from the 2007 Floods. Final Report.*Cabinet Office, London, UK, 505 pp.
- Planque, B., J. Fromentin, P. Cury, K.F. Drinkwater, S. Jennings, R.I. Perry, and S. Kifani, 2010: How does fishing alter marine populations and ecosystems sensitivity to climate? *Journal of Marine Systems*, 79(3-4), 403-417.
- Planton, S., P. Lionello, V. Artale, R. Aznar, A. Carillo, J. Colin, L. Congedi, C. Dubois, A. Elizalde Arellano, S. Gualdi, E. Hertig, G. Jordà Sanchez, L. Li, J. Jucundus, C. Piani, P. Ruti, E. Sanchez-Gomez, G. Sannino, F. Sevault, and S. Somot, 2006: The climate of the Mediterranean region under global warming. In: Mediterranean Climate Variability [Lionello, P., P. Malanotte-Rizzoli, and R. Boscolo (eds.)]. Elsevier, Amsterdam, Netherlands and Oxford, UK, pp. 399-416.
- Poirier, M., J.L. Durand, and F. Volaire, 2012: Persistence and production of perennial grasses under water deficits and extreme temperatures: importance of intraspecific vs. interspecific variability. Global Change Biology, 18(12), 3632-3646.
- Polemio, M. and O. Petrucci, 2010: Occurrence of landslide events and the role of climate in the twentieth century in Calabria, southern Italy. *Quarterly Journal* of Engineering Geology and Hydrogeology, 43(4), 403-415.
- Popov Janevska, D., R. Gospavic, E. Pacholewicz, and V. Popov, 2010: Application of HACCP-QMRA approach for managing the impact of climate change on food quality and safety. Food Research International, 43(7), 1915-1924.
- Post, J., T. Conradt, F. Suckow, V. Krysanova, F. Wechsung, and F.F. Hattermann, 2008: Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. *Hydrological Sciences Journal*, 53(5), 1043-1058.

- **Powlson**, D.S., A.P. Whitmore, and K.W.T. Goulding, 2011: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. *European Journal of Soil Science*, **62(1)**, 42-55.
- Pruszak, Z. and E. Zawadzka, 2008: Potential implications of sea-level rise for Poland. Journal of Coastal Research, 24(2), 410-422.
- Pryor, S.C. and R.J. Barthelmie, 2010: Climate change impacts on wind energy: a review. Renewable and Sustainable Energy Reviews, 14(1), 430-437.
- Pryor, S.C. and J.T. Schoof, 2010: Importance of the SRES in projections of climate change impacts on near-surface wind regimes. *Meteorologische Zeitschrift*, 19(3), 267-274.
- Purvis, M.J., P.D. Bates, and C.M. Hayes, 2008: A probabilistic methodology to estimate future coastal flood risk due to sea level rise. *Coastal Engineering*, 55(12), 1062-1073.
- Quevauviller, P., 2011: Adapting to climate change: reducing water-related risks in Europe – EU policy and research considerations. *Environmental Science & Policy*, 14(7), 722-729.
- Queyriaux, B., A. Armengaud, C. Jeannin, C. Coutourier, and F. Peloux-Petiot, 2008: Chikungunya in Europe. *The Lancet*, **371(9614)**, 723-724.
- Quintana-Segui, P., F. Habets, and E. Martin, 2011: Comparison of past and future Mediterranean high and low extremes of precipitation and river flow projected using different statistical downscaling methods. *Natural Hazards and Earth* System Sciences, 11(5), 1411-1432.
- Radovic, V., K. Vitale, and P.B. Tchounwou, 2012: Health facilities safety in natural disasters: experiences and challenges from South East Europe. *International Journal of Environmental Research and Public Health*, 9(5), 1677-1686.
- Raftoyannis, Y., I. Spanos, and K. Radoglou, 2008: The decline of Greek fir (Abies cephalonica Loudon): relationships with root condition. Plant Biosystems, 142(2), 386-390.
- Rahel, F.J. and J.D. Olden, 2008: Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(13), 521-533.
- Räisänen, J. and J. Eklund, 2012: 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Climate Dynamics, 38(11-12), 2575-2591.
- Randolph, S.E. and D.J. Rogers, 2010: The arrival, establishment and spread of exotic diseases: patterns and predictions. *Nature Reviews*, 8(5), 361-371.
- Rauthe, M., M. Kunz, and C. Kottmeier, 2010: Changes in wind gust extremes over Central Europe derived from a small ensemble of high resolution regional climate models. *Meteorologische Zeitschrift*, **19(3)**, 299-312.
- Ready, P.D., 2010: Leishmaniasis emergence in Europe. Eurosurveillance, 15(10), 29-39.
- Rees, P., N. van der Gaag, J. de Beer, and F. Heins, 2012: European regional populations: current trends, future pathways, and policy options. *European Journal of Population*, **28(4)**, 385-416.
- Rees, W.G., F.M. Stammler, F.S. Danks, and P. Vitebsky, 2008: Vulnerability of European reindeer husbandry to global change. Climatic Change, 87(1-2), 199-217.
- Refsgaard, J.C., K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen, H. Madsen, A. Markandya, J.E. Olesen, J.R. Porter, and J.H. Christensen, 2013: The role of uncertainty in climate change adaptation strategies. A Danish water management example. Mitigation and Adaptation Strategies for Global Change, 18(3), 337-359.
- Reginster, I. and M. Rounsevell, 2006: Scenarios of future urban land use in Europe. Environment and Planning B: Planning & Design, 33(4), 619-636.
- Renard, B., M. Lang, P. Bois, A. Dupeyrat, O. Mestre, H. Niel, E. Sauquet, C. Prudhomme, S. Parey, E. Paquet, L. Neppel, and J. Gailhard, 2008: Regional methods for trend detection: assessing field significance and regional consistency. Water Resources Research, 44(8), W08419, doi:10.1029/2007WR006268.
- Renaudeau, D., J.L. Gourdine, and N.R. St-Pierre, 2011: Meta-analysis of the effect of high ambient temperature on growing-finishing pigs. *Journal of Animal Science*, 89(7), 2220-2230.
- Renaudeau, D., A. Collin, S. Yahav, V. De Basilio, J.L. Gourdine, and R.J. Collier, 2012: Adaptation to hot climate and strategies to alleviate heat stress in livestock production. *Animal*, 6(5), 707-728.
- Resco de Dios, V., C. Fischer, and C. Colinas, 2007: Climate change effects on Mediterranean forests and preventive measures. New Forests, 33(1), 29-40.
- Revich, B., 2011: Heat-wave, air quality and mortality in the Russian Federation's Europe, 2010: preliminary assessment. *Human Ecology*, **7**, 3-9.
- Revich, B. and D.A. Shaposhnikov, 2012: Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Studies on Russian Economic Development, 23(2), 195-207.

- Rickebusch, S., W. Thuiller, T. Hickler, M.B. Araújo, M.T. Sykes, O. Schweiger, and B. Lafourcade, 2008: Incorporating the effects of changes in vegetation functioning and CO₂ on water availability in plant habitat models. *Biology Letters*, 4(5), 556-559.
- **Rico-Amoros**, A.M., J. Olcina-Cantosa, and D. Sauri, 2009: Tourist land use patterns and water demand: evidence from the Western Mediterranean. *Land Use Policy*, **26(2)**, 493-501.
- Rigling, A., C. Bigler, B. Eilmann, E. Feldmeyer-Christe, U. Gimmi, C. Ginzler, U. Graf, P. Mayer, G. Vacchiano, P. Weber, T. Wohlgemuth, R. Zweifel, and M. Dobbertin, 2013: Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. *Global Change Biology*, 19, 229-240.
- Rixen, C., M. Teich, C. Lardelli, D. Gallati, M. Pohl, M. Pütz, and P. Bebi, 2011: Winter tourism and climate change in the Alps: an assessment of resource consumption, snow reliability, and future snowmaking potential. *Mountain Research and Development*, 31(3), 229-236.
- Robine, J.M., S.L.K. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J.P. Michel, and F.R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171-178.
- Rockel, B. and K. Woth, 2007: Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. *Climatic Change*, **81(Suppl. 1)**, 267-280.
- Rocklöv, J. and B. Forsberg, 2010: The effect of high ambient temperature on the elderly population in three regions of Sweden. *International Journal of Environmental Research and Public Health*, **7(6)**, 2607-2619.
- Roiz, D., M. Neteler, C. Castellani, D. Arnoldi, and A. Rizzoli, 2011: Climatic factors driving invasion of the tiger mosquito (*Aedes albopictus*) into new areas of Trentino, northern Italy. *PLoS One*, 6(4), e14800, doi:10.1371/journal.pone. 0014800.
- Rojas, R., L. Feyen, A. Bianchi, and A. Dosio, 2012: Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. *Journal of Geophysical Research D: Atmospheres*, 117(D17), D17109, doi:10.1029/2012JD017461.
- Rojas, R., L. Feyen, and P. Watkiss, 2013: Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation. *Global Environmental Change*, 23(6), 1737-1751.
- Roos, J., R. Hopkins, A. Kvarnheden, and C. Dixelius, 2011: The impact of global warming on plant diseases and insect vectors in Sweden. *European Journal of Plant Pathology*, 129(1), 9-19.
- Rosan, P. and D. Hammarlund, 2007: Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. *Biogeosciences*, **4(6)**, 975-984.
- Rosenzweig, C. and F.N. Tubiello, 2007: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. *Mitigation and Adaptation Strategies for Global Change*, **12(5)**, 855-873.
- Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins, and A. Imeson, 2008: Attributing physical and biological impacts to anthropogenic climate change. *Nature*, 453, 353-357.
- Rötter, R.P., T. Palosuo, N.K. Pirttioja, M. Dubrovski, T. Salo, S. Fronzek, R. Aikasalo, M. Trnka, A. Ristolainen, and T. Carter, 2011: What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. European Journal of Agronomy, 35(4), 205-214.
- Rouault, G., J.N. Candau, F. Lieutier, L.M. Nageleisen, J.C. Martin, and N. Warzée, 2006: Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science, 63(6), 613-624.
- **Rounsevell**, M.D.A. and M.J. Metzger, 2010: Developing qualitative scenario storylines for environmental change assessment. *Wiley Interdisciplinary Reviews: Climate Change*, **1(4)**, 606-619.
- Rounsevell, M.D.A. and D.S. Reay, 2009: Land use and climate change in the UK. Land Use Policy, 26(Suppl. 1), 160-169.
- Rounsevell, M.D.A., I. Reginster, M.B. Araújo, T.R. Carter, N. Dendoncker, F. Ewert, J.I. House, S. Kankaanpää, R. Leemans, M.J. Metzger, C. Schmit, P. Smith, and G. Tuck, 2006: A coherent set of future land use change scenarios for Europe. *Agriculture, Ecosystems and Environment*, 114(1), 57-68.
- Rubolini, D., R. Ambrosini, M. Caffi, P. Brichetti, S. Armiraglio, and N. Saino, 2007a: Long-term trends in first arrival and first egg laying dates of some migrant and resident bird species in northern Italy. *International Journal of Biometeorology*, 51(6), 553-563.

Rubolini, D., A.P. Møller, K. Rainio, and E. Lehikoinen, 2007b: Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Climate Research, 35(1-2), 135-146.

- **Ruiz-Ramos**, D.V., E.A. Hernandez-Delgado, and N.V. Schizas, 2011: Population status of the long-spined urchin *Diadema antillarum* in Puerto Rico 20 years after a mass mortality event. *Bulletin of Marine Science*, **87(1)**, 113-127.
- Rusch, G.M., 2012: Climate and Ecosystem Services. The Potential of Norwegian Ecosystems for Climate Mitigation and Adaptation. NINA Report 791, Norwegian Institute for Nature Research (NINA), Trondheim, Norway, 43 pp.
- Rutty, M. and D. Scott, 2010: Will the Mediterranean become "too hot" for tourism? A reassessment. *Tourism Planning & Development*, **7(3)**, 267-281.
- Sabbioni, C., A. Bonazza, and P. Messina, 2008: Global climate change and archaeological heritage: prevision, impact and mapping. In: ARCHAIA. Case Studies on Research Planning, Characterisation, Conservation and Management of Archaeological Sites [Marchetti, N. and I. Thuesen (eds.)]. Archaeopress, Oxford, UK, pp. 295-300.
- Sabbioni, C., P. Brimblecombe, and M. Cassar, 2012: Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies.

 Anthem Press, London, UK, 146 pp.
- Sabir, M., J. Ommeren, M. Koetse, and P. Rietveld, 2010: Adverse weather and commuting speed. *Networks and Spatial Economics*, **11(4)**, 701-712.
- Saino, N., R. Ambrosini, D. Rubolini, J. Von Hardenberg, A. Provenzale, K. Hüppop, O. Hüppop, A. Lehikoinen, E. Lehikoinen, K. Rainio, M. Romano, and L. Sokolov, 2011: Climate warming, ecological mismatch at arrival and population decline in migratory birds. *Proceedings of the Royal Society B*, 278(1707), 835-842.
- Sainz-Elipe, S., J.M. Latorre, R. Escosa, M. Masià, M.V. Fuentes, S. Mas-Coma, and M.D. Bargues, 2010: Malaria resurgence risk in southern Europe: climate assessment in an historically endemic area of rice fields at the Mediterranean shore of Spain. *Malaria Journal*, 9(1), 221-237.
- Salis, M., A. Ager, B. Arca, M. Finney, V. Bacciu, P. Duce, and D. Spano, 2013: Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. *International Journal of Wildland Fire*, 22(4), 549-565.
- Sanchez-Rodriguez, R., 2009: Learning to adapt to climate change in urban areas. A review of recent contributions. Current Opinion in Environmental Sustainability, 1(2), 201-206.
- San-Miguel-Ayanz, J., M. Rodrigues, S. Santos de Oliveira, C.K. Pacheco, F. Moreira, B. Duguy, and A. Camia, 2012: Land cover change and fire regime in the European Mediterranean region. In: Post-Fire Management and Restoration of Southern European Forests [Moreira, F., M. Arianoutsou, P. Corona, and J. De las Heras (eds.)]. Managing Forest Ecosystems Series, Book 24, Springer Science, Dordrecht, Netherlands, pp. 21-43.
- San-Miguel-Ayanz, J., J.M. Moreno, and A. Camia, 2013: Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. *Forest Ecology and Management*, **294**, 11-22.
- Santos, J.A., A.C. Malheiro, M.K. Karremann, and J.G. Pinto, 2011: Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. *International Journal of Biometeorology*, 55(2), 119-131.
- Sauter, T., C. Weitzenkamp, and C. Schneider, 2010: Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. *International Journal of Climatology*, 30(15), 2330-2341.
- Savé, R., F. de Herralde, X. Aranda, E. Pla, D. Pascual, I. Funes, and C. Biel, 2012: Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: results from a modeling approximation to watershed-level water balance. Agricultural Water Management, 114, 78-87.
- Schaefli, B., B. Hingray, and A. Musy, 2007: Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modeling uncertainties. *Hydrology & Earth System Sciences*, 11(3), 1191-1205.
- Schär, C. and G. Jendritzky, 2004: Climate change: hot news from summer 2003. Nature, 432(7017), 559-560.
- Schifano, P., M. Leone, M. De Sario, F. de'Donato, A.M. Bargagli, D. D'Ippoliti, C. Marino, and P. Michelozzi, 2012: Changes in the effects of heat on mortality among the elderly from 1998-2010: results from a multicentre time series study in Italy. Environmental Health: A Global Access Science Source, 11(1), 58, doi:10.1186/1476-069X-11-58.
- Schmidli, J., C.M. Goodess, C. Frei, M.R. Haylock, Y. Hundecha, J. Ribalaygua, and T. Schmith, 2007: Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps. *Journal of Geophysical Research*, 112(D4), D04105, doi:10.1029/2005JD007026.

Schmocker-Fackel, P. and F. Naef, 2010: Changes in flood frequencies in Switzerland since 1500. Hydrology and Earth System Sciences, 14(8), 1581-1594.

- Schnitzler, J., J. Benzler, D. Altmann, I. Mucke, and G. Krause, 2007: Survey on the population's needs and the public health response during floods in Germany 2002. Journal of Public Health Management and Practice, 13(5), 461-464.
- Scholz, G., J.N. Quinton, and P. Strauss, 2008: Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. *Catena*, 72(1), 91-105.
- Schroter, D., W. Cramer, R. Leemans, I. Prentice, M. Araujo, N. Arnell, A. Bondeau, H. Bugmann, T. Carter, A. Vega-Leinert, M. Erhard, F. Ewert, M. Glendining, J. House, S. Kankaanpaa, R. Klein, S. Lavorel, M. Lindner, M. Metzger, J. Meyer, T. Mitchell, I. Reginster, M. Rounsevell, S. Sabate, S. Sitch, B. Smith, J. Smith, P. Smith, M. Sykes, K. Thonicke, W. Thuiller, G. Tuck, S. Saehle, and B. Zierl, 2005: Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337
- Schulze, E.D., S. Luyssaert, P. Ciais, A. Freibauer, I.A. Janssens, J.F. Soussana, P. Smith, J. Grace, I. Levin, B. Thiruchittampalam, M. Heimann, A.J. Dolman, R. Valentini, P. Bousquet, P. Peylin, W. Peters, C. Rödenbeck, G. Etiope, N. Vuichard, M. Wattenbach, G.J. Nabuurs, Z. Poussi, J. Nieschulze, and J.H. Gash, 2010: Importance of methane and nitrous oxide for Europe's terrestrial greenhousegas balance. Nature Geoscience, 2(12), 842-850.
- Schutze, N. and G.H. Schmitz, 2010: OCCASION: new planning tool for optimal climate change adaption strategies in irrigation. *Journal of Irrigation and Drainage Engineering*, 136(12), 836-846.
- Schwarze, R., M. Schwindt, H. Weck-Hannemann, P. Raschky, F. Zahn, and G. Wagner, 2011: Natural hazard insurance in Europe: tailored responses to climate change are needed. *Environmental Policy and Governance*, 21, 14-30.
- Schweiger, O., R.K. Heikkinen, A. Harpke, T. Hickler, S. Klotz, O. Kudrna, I. Kühn, J. Pöyry, and J. Settele, 2012: Increasing range mismatching of interacting species under global change is related to their ecological characteristics. *Global Ecology and Biogeography*, 21(1), 88-99.
- Schwierz, C., P. Köllner-Heck, E.Z. Mutter, D.N. Bresch, P.L. Vidale, M. Wild, and C. Schär, 2010: Modelling European winter wind storm losses in current and future climate. Climatic Change, 101(3), 485-514.
- Seidl, R. and M. Lexer, 2013: Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity. *Journal of Environmental Management*, 114, 461-469.
- Seidl, R., M.-J. Schelhaas, M. Lindner, and M.J. Lexer, 2009: Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. *Regional Environmental Change*, 9(2), 101-119.
- Seidl, R., W. Rammer, and M. Lexer, 2011: Climate change vulnerability of sustainable forest management in the Eastern Alps. *Climatic Change*, 106, 225-254.
- Seljom, P., E. Rosenberg, A. Fidge, J. Haugen, M. Meir, J. Rekstad, and T. Jarlset, 2011: Modelling the effects of climate change on the energy system – a case study of Norway. *Energy Policy*, 39(11), 7310-7321.
- Semenov, M.A., 2009: Impacts of climate change on wheat in England and Wales. Journal of the Royal Society Interface, 6(33), 343-350.
- Semenov, V.A., 2011: Climate-related changes in hazardous and adverse hydrological events in the Russian rivers. Russian Meteorology and Hydrology, 36(2), 124-129.
- Semenza, J.C. and B. Menne, 2009: Climate change and infectious diseases in Europe. Lancet Infectious Diseases, 9(6), 365-375.
- Semenza, J., J. Suk, V. Estevez, K.L. Ebi, and E. Lindgren, 2012: Mapping climate change vulnerabilities to infectious diseases in Europe. *Environmental Health Perspectives*, 120(3), 385-392.
- Senatore, A., G. Mendicino, G. Smiatek, and H. Kunstmann, 2011: Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. *Journal of Hydrology*, 399(1-2), 70-92.
- **Serquet**, G. and M. Rebetez, 2011: Relationship between tourism demand in the Swiss Alps and hot summer air temperatures associated with climate change. *Climatic Change*, **108(1)**, 291-300.
- Shvidenko, A.Z., D.G. Shchepashchenko, E.A. Vaganov, A.I. Sukhinin, S.S. Maksyutov, I. McCallum, and I.P. Lakyda, 2011: Impact of wildfire in Russia between 1998-2010 on ecosystems and the global carbon budget. *Doklady Earth Sciences*, 441(2), 1678-1682.
- Siebert, S. and F. Ewert, 2012: Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. *Agricultural and Forest Meteorology*, **152**, 44-57.

- Silva, D.E., P. Rezende Mazzella, M. Legay, E. Corcket, and J.L. Dupouey, 2012: Does natural regeneration determine the limit of European beech distribution under climatic stress? Forest Ecology and Management, 266, 263-272.
- Sirotenko, O.D. and E.V. Abashina, 2008: Modern climate changes of biosphere productivity in Russia and adjacent countries. Russian Meteorology and Hydrology, 33(4), 267-271.
- Skeffington, M.S. and K. Hall, 2011: The ecology, distribution and invasiveness of Gunnera L. species in Connemara, Western Ireland. Biology and Environment, 111(3), 157-175.
- Slangen, A., C. Katsman, R. van de Wal, L. Vermeersen, and R. Riva, 2012: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 38, 1191-1209.
- Smith, P. and J.E. Olesen, 2010: Synergies between mitigation of, and adaptation to, climate change in agriculture. *Journal of Agricultural Science*, 148(5), 543-552.
- Smith, P., P.J. Gregory, D. van Vuuren, M. Obersteiner, P. Havlik, M. Rounsevell, J. Woods, E. Stehfest, and J. Bellarby, 2010: Competition for land. *Philosophical Transactions of the Royal Society B*, 365(1554), 2941-2957.
- Smith, T.M., R.W. Reynolds, T.C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature analysis (1880-2006). *Journal of Climate*, 21(10), 2283-2293.
- Soane, B.D., B.C. Ball, J. Arvidsson, G. Basch, F. Moreno, and J. Roger-Estrade, 2012: No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66-87.
- Solberg, S., Ø. Hov, A. Søvde, I.S.A. Isaksen, P. Coddeville, H. De Backer, C. Forster, Y. Orsolini, and K. Uhse, 2008: European surface ozone in the extreme summer 2003. *Journal of Geophysical Research*, 113(D7), D07307, doi:10.1029/2007JD009098.
- Sorte, C.J.B., S.L. Williams, and R.A. Zerebecki, 2010: Ocean warming increases threat of invasive species in a marine fouling community. *Ecology*, **91**, 2198-2204.
- Sousa, P.M., R.M. Trigo, P. Aizpurua, R. Nieto, L. Gimeno, and R. Garcia-Herrera, 2011: Trends and extremes of drought indices throughout the 20th century in the Mediterranean. *Natural Hazards and Earth System Science*, 11(1), 33-51.
- Soussana, J.F. and A. Luscher, 2007: Temperate grasslands and global atmospheric change: a review. Grass and Forage Science, 62(2), 127-134.
- Soussana, J.F., A.I. Graux, and F.N. Tubiello, 2010: Improving the use of modelling for projections of climate change impacts on crops and pastures. *Journal of Experimental Botany*, 61(8), 2217-2228.
- Spangenberg, L., F. Battke, M. Grana, K. Nieselt, and H. Naya, 2011: Identifying associations between amino acid changes and meta information in alignments. *Bioinformatics*, 27(20), 2782-2789.
- Stafoggia, M., F. Forastiere, D. Agostini, N. Caranci, F. de'Donato, M. Demaria, P. Michelozzi, R. Miglio, M. Rognoni, A. Russo, and C.A. Perucci, 2008: Factors affecting in-hospital heat-related mortality: a multi-city case-crossover analysis. Journal of Epidemiology and Community Health, 62(3), 209-215.
- Stahl, K., H. Hisdal, J. Hannaford, L.M. Tallaksen, H.A.J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar, 2010: Streamflow trends in Europe: evidence from a dataset of near-natural catchments. *Hydrology & Earth System Sciences*, 14, 2367-2382.
- **Stanzel**, P. and H.P. Nachtnebel, 2010: Mögliche auswirkungen des klimawandels auf den wasserhaushalt und die wasserkraftnutzung in Österreich. *Österreichische Wasser- und Abfallwirtschaft*, **62(9-10)**, 180-187.
- Steele-Dunne, S., P. Lynch, R. McGrath, T. Semmler, S. Wang, J. Hanafin, and P. Nolan, 2008: The impacts of climate change on hydrology in Ireland. *Journal of Hydrology*, 356(1-2), 28-45.
- Steger, C., S. Kotlarski, T. Jonas, and C. Schär, 2013: Alpine snow cover in a changing climate: a regional climate model perspective. *Climate Dynamics*, 41(3-4), 735-754.
- Steiger, R., 2010: The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Climate Research, 43, 251-262.
- Steiger, R., 2011: The impact of snow scarcity on ski tourism. An analysis of the record warm season 2006/07 in Tyrol (Austria). Tourism Review, 66(3), 4-13.
- Steiger, R., 2012: Scenarios for skiing tourism in Austria: integrating demographics with an analysis of climate change. *Journal of Sustainable Tourism*, 20(6), 867-882.
- Steiger, R. and M. Mayer, 2008: Snowmaking and climate change: future options for snow production in Tyrolean ski resorts. *Mountain Research and Development*, 28(3-4), 292-298.

Sterl, A., H. van den Brink, H. de Vries, R. Haarsma, and E. van Meijgaard, 2009: An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate. *Ocean Science*, 5, 369-378.

- Stoate, C., A. Báldi, P. Beja, N.D. Boatman, I. Herzon, A. van Doorn, G.R. de Snoo, L. Rakosy, and C. Ramwell, 2009: Ecological impacts of early 21st century agricultural change in Europe a review. *Journal of Environmental Management*, **91(1)**, 22-46
- **Stoffel**, M. and C. Huggel, 2012: Effects of climate change on mass movements in mountain environments. *Progress in Physical Geography*, **36(3)**, 421-439.
- Stoll, S., H.J. Hendricks Franssen, M. Butts, and W. Kinzelbach, 2011: Analysis of the impact of climate change on groundwater related hydrological fluxes: a multimodel approach including different downscaling methods. *Hydrology & Earth System Sciences*, 15, 21-38.
- **Storm**, J., A.W. Cattaneo, and F. Trincardi, 2008: Coastal dynamics under conditions of rapid sea-level rise: Late Pleistocene to Early Holocene evolution of barrier-lagoon systems on the Northern Adriatic shelf (Italy). *Quaternary Science Reviews*, **27(11-12)**, 1107-1123.
- **Stratonovitch**, P., 2012: A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. *Global Change Biology*, **18(6)**, 2071-2080.
- Streftaris, N., A. Zenetos, and E. Papathanassiou, 2005: Globalisation in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanography and Marine Biology — an Annual Review, 43, 419-453.
- Supit, I., C.A. van Diepen, A.J.W. de Wit, P. Kabat, B. Baruth, and F. Ludwig, 2010: Recent changes in the climatic yield potential of various crops in Europe. Agricultural Systems, 103, 683-694.
- **Surminski**, S. and A. Philp, 2010: Briefing: guidance on insurance issues for new developments. *Proceedings of the Institution of Civil Engineers: Engineering Sustainability*, **163(1)**, 3-6.
- Swart, R., L. Bernstein, M. Ha-Duong, and A. Petersen, 2009a: Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change, 92(1), 1-29.
- Swart, R., R. Biesbroek, S. Binnerup, T.R. Carter, C. Cowan, T. Henrichs, S. Loquen, H. Mela, M. Morecroft, M. Reese, and D. Rey, 2009b: Europe Adapts to Climate Change: Comparing National Adaptation Strategies. PEER Report No. 1, Partnership for European Environmental Research (PEER), Helsinki, Finland, 280 pp.
- Swedish Commission on Climate and Vulnerability, 2007: Sweden Facing Climate

 Change Threats and Opportunities. Final report from the Swedish Commission

 on Climate and Vulnerability, Swedish Government Official Reports SOU 2007:60, Stockholm, Sweden, 679 pp.
- Tardieu, F., 2012: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. *Journal of Experimental Botany*, 63(1), 25-31.
- Tasker, M.L. (ed.), 2008: The Effect of Climate Change on the Distribution and Abundance of Marine Species in the OSPAR Maritime Area. ICES Cooperative Research Report No. 293, International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark, 45 pp.
- Taylor, S., L. Kumar, N. Reid, and D.J. Kriticos, 2012: Climate change and the potential distribution of an invasive shrub, *Lantana camara L. PLoS ONE*, 7(4), e35565, doi:10.1371/journal.pone.0035565.
- te Linde, A.H., 2007: Effects of climate change on discharge behaviour of the river Rhine. In: *Proceedings of the Third International Conference on Climate and Water, 3-6, September, 2007* [Heinonen, M. (ed.)]. Organized by the Finnish Environment Institute (SYKE), Helsinki, Finland, pp. 296-301, protosh2o.act.be/ VIRTUELE_BIB/Water_in_de_Wereld/MIL-Milieu/W_MIL_E7_Proceedings_ conference.pdf.
- te Linde, A.H., J.C.J.H. Aerts, A.M.R. Bakker, and J.C.J. Kwadijk, 2010a: Simulating low-probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resources Research, 46(3), W03512, doi:10.1029/ 2009WR007707.
- te Linde, A.H., J.C.J.H. Aerts, and J.C.J. Kwadijk, 2010b: Effectiveness of flood management measures on peak discharges in the Rhine basin under climate change. *Journal of Flood Risk Management*, 3(4), 248-269.
- te Linde, A.H., P. Bubeck, J.E.C. Dekkers, H. De Moel, and J.C.J.H. Aerts, 2011: Future flood risk estimates along the river Rhine. *Natural Hazards and Earth System Sciences*, 11(2), 459-473.
- Teich, M., C. Marty, C. Gollut, A. Grêt-Regamey, and P. Bebi, 2012: Snow and weather conditions associated with avalanche releases in forests: rare situations with decreasing trends during the last 41 years. Cold Regions Science and Technology, 83-84, 77-88.

ten Brinke, W.B.M., B. Kolen, A. Dollee, H. van Waveren, and K. Wouters, 2010: Contingency planning for large-scale floods in the Netherlands. *Journal of Contingencies and Crisis Management*, 18(1), 55-69.

- ter Hofstede, R., J. Hiddink, and A. Rijnsdorp, 2010: Regional warming changes fish species richness in the Eastern North Atlantic Ocean. *Marine Ecology Progress Series*, 414, 1-9.
- **Terpstra**, T. and J.M. Gutteling, 2008: Households' perceived responsibilities in flood risk management in the Netherlands. *International Journal of Water Resources Development*, **24(4)**, 555-565.
- Tervo, K., 2008: The operational and regional vulnerability of winter tourism to climate variability and change: the case of the Finnish nature-based tourism entrepreneurs. Scandinavian Journal of Hospitality and Tourism, 8(4), 317-332.
- Thieken, A.H., T. Petrow, H. Kreibich, and B. Merz, 2006: Insurability and mitigation of flood losses in private households in Germany. *Risk Analysis*, 26(2), 383-395.
- **Thodsen**, H., 2007: The influence of climate change on stream flow in Danish rivers. *Journal of Hydrology*, **333(2-4)**, 226-238.
- Thodsen, H., B. Hasholt, and J.H. Kjarsgaard, 2008: The influence of climate change on suspended sediment transport in Danish rivers. *Hydrological Processes*, 22(6), 764-774.
- Three Regions Climate Change Group, 2008: Your Home in a Changing Climate. Retrofitting Existing Homes in a Changing Climate. Report for Policy Makers. Prepared by ARUP for the Three Regions Climate Change Group, the Greater London Authority, London, UK, 75 pp.
- Thuiller, W., S. Lavergne, C. Roquet, I. Boulangeat, B. Lafourcade, and M.B. Araujo, 2011: Consequences of climate change on the tree of life in Europe. *Nature*, 470, 531-534.
- Trnka, M., F. Muska, D. Semeradova, M. Dubrovsky, E. Kocmankova, and Z. Zalud, 2007: European Corn Borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. *Ecological Modelling*, 207(2-4), 61-84.
- Trnka, M., J. Eitzinger, P. Hlavinka, M. Dubrovska, D. Semerádová, P. Åtapanek, S. Thaler, Z. Åsalud, M. Molna, and H. Formayer, 2009: Climate-driven changes of production regions in Central Europe. *Plant and Soil*, 2009(521), 257-266.
- Trnka, M., E. Kocmánková, J. Baleka, J. Eitzinger, F. Ruget, H. Formayer, P. Hlavinka, M. Schaumberger, V. Horáková, M. Možný, and Z. Žaluda, 2010: Simple snow cover model for agrometeorological applications. Agricultural and Forest Meteorology, 150, 1115-1127.
- Trnka, M., J.E. Olesen, K.C. Kersebaum, A.O. Skjelvåg, J. Eitzinger, B. Seguin, P. Peltonen-Sainio, R. Rötter, A. Iglesias, S. Orlandini, M. Dubrovský, P. Hlavinka, J. Balek, H. Eckersten, E. Cloppet, P. Calanca, A. Gobin, V. Vučetić, P. Nejedlik, S. Kumar, B. Lalic, A. Mestre, F. Rossi, J. Kozyra, V. Alexandrov, D. Semerádová, and Z. Žalud, 2011: Agroclimatic conditions in Europe under climate change. Global Change Biology, 17(7), 2298-2318.
- Troccoli, A., F. Zambon, K. Hodges, and M. Marani, 2012a: Storm surge frequency reduction in Venice under climate change. *Climatic Change*, 113(3-4), 1065-1079.
- Troccoli, A., F. Zambon, K.I. Hodges, and M. Marani, 2012b: Reply to comment on "Storm surge frequency reduction in Venice under climate change" by G. Jordà, D. Gomis & M. Marcos. Climatic Change, 113(3-4), 1089-1095.
- Tsanis, I.K., A.G. Koutroulis, I.N. Daliakopoulos, and D. Jacob, 2011: Severe climate-induced water shortage and extremes in Crete. Climatic Change, 106(4), 667-677.
- Tu, M., M.J. Hall, P.J.M. de Laat, and M.J.M. de Wit, 2005: Extreme floods in the Meuse river over the past century: aggravated by land-use changes? *Physics and Chemistry of the Earth, Parts A/B/C*, 30(4-5), 267-276.
- **Tubiello**, F.N., J.F. Soussana, and S.M. Howden, 2007: Crop and pasture response to climate change. *Proceedings of the National Academy of Sciences of the United States of America*, **104**(**50**), 19686-19690.
- Tuck, G., M.J. Glendining, P. Smith, J.I. House, and M. Wattenbach, 2006: The potential distribution of bioenergy crops in Europe under present and future climate. *Biomass and Bioenergy*, 30(3), 183-197.
- Turco, M., M.C. Llasat, J. von Hardenberg, and A. Provenzale, 2013: Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change, 116(3-4), 665-678.
- Uhlmann, B., S. Goyette, and M. Beniston, 2009: Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature, precipitation and humidity under conditions of climate change. *International Journal of Climatology*, 29(8), 1048-1055.

UK National Ecosystem Assessment, 2011: The UK National Ecosystem Assessment: Technical Report. United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), UNEP-WCMC, Cambridge, UK, 1466 pp.

- UK-ASC, 2011: Adapting to Climate Change in the UK: Measuring Progress. Adaptation Sub-Committee (UK-ASC) Progress Report, Committee on Climate Change (CCC), London, UK, 101 pp.
- Ulbrich, U., G.C. Leckebusch, and J.G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: a review. *Theoretical and Applied Climatology*, 96(1-2), 117-131.
- Ulbrich, U., P. Lionello, D. Belušic, J. Jacobeit, P. Knippertz, F.G. Kuglitsch, G.C. Leckebusch, J. Luterbacher, M. Maugeri, P. Maheras, K.M. Nissen, V. Pavan, J.G. Pinto, H. Saaroni, S. Seubert, A. Toreti, E. Xoplaki, and B. Ziv, 2012: Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: *The Climate of the Mediterranean Region: From the Past to the Future* [Lionello, P. (ed.)]. Elsevier, London, UK and Waltham, MA, USA, pp. 301-346.
- Ulén, B.M. and G.A. Weyhenmeyer, 2007: Adapting regional eutrophication targets for surface waters – influence of the EU Water Framework Directive, national policy and climate change. Environmental Science & Policy, 10(7-8), 734-742.
- Unbehaun, W., U. Pröbstl, and W. Haider, 2008: Trends in winter sport tourism: challenges for the future. *Tourism Review*, 63(1), 36-47.
- UNEP, 2010: Global Synthesis A Report from the Regional Seas Conventions and Action Plans for the Marine Biodiversity Assessment and Outlook Series. United Nations Environment Programme (UNEP), Nairobi, Kenya, 55 pp.
- Usbeck, T., T. Wohlgemuth, M. Dobbertin, C. Pfister, A. Burgi, and M. Rebetez, 2010: Increasing storm damage to forests in Switzerland from 1858 to 2007. Agricultural and Forest Meteorology, 150, 47-55.
- Van der Linden, P. and J.F.B. Mitchell, 2009: ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from The ENSEMBLES Project. Met Office Hadley Centre, Exeter, UK, 160 pp.
- van der Velde, M., G. Wriedt, and F. Bouraoui, 2010: Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agriculture Ecosystems & Environment, 135(1-2), 90-97.
- van Dijk, J., N.D. Sargison, F. Kenyon, and P.J. Skuce, 2010: Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions. *Animal*, 4(3), 377-392.
- Van Nieuwaal, K., P. Driessen, T. Spit, and C. Termeer, 2009: A State of the Art of Governance Literature on Adaptation to Climate Change: Towards a Research Agenda. Report No. 003/2009, Knowledge for Climate (KfC), KfC Secretariat, Utrecht University, Utrecht, Netherlands, 43 pp.
- van Vliet, M.T.H. and J.J.G. Zwolsman, 2008: Impact of summer droughts on the water quality of the Meuse river. *Journal of Hydrology*, 353(1-2), 1-17.
- van Vliet, M.T.H., J.R. Yearsley, F. Ludwig, S. Vögele, D.P. Lettenmaier, and P. Kabat, 2012: Vulnerability of US and European electricity supply to climate change. *Nature Climate Change*, 2(9), 676-681.
- Varakina, Z.L., D.A. Shaposhnikov, B.A. Revich, A.M. Vyazmin, E.D. Yurasova, J. Nurse, and B. Menne, 2011: The projected impact of climate change on the daily mortality: a case study in Archangelsk city in Northwest Russia. European Journal of Public Health, 21(Suppl. 1), 159, eurpub.oxfordjournals.org/content/21/suppl_1/10.full.pdf.
- Vautard, R., J. Cattiaux, P. Yiou, J.N. Thepaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. *Nature Geoscience*, 3(11), 756-761.
- Veijalainen, N., E. Lotsari, P. Alho, B. Vehviläinen, and J. Käyhkö, 2010: National scale assessment of climate change impacts on flooding in Finland. *Journal of Hydrology*, 391(3-4), 333-350.
- Ventrella, D., M. Charfeddine, and M. Bindi, 2012: Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. *Regional Environmental Change*, 12(3), 407-419.
- Verburg, P.H., D.B. van Berkel, A.M. van Doorn, M. van Eupen, and H.A.R.M. van den Heiligenberg, 2010: Trajectories of land use change in Europe: a model-based exploration of rural futures. *Landscape Ecology*, 25(2), 217-232.
- Verny, J. and C. Grigentin, 2009: Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1), 107-117.
- Vidal, J.P. and S. Wade, 2009: A multimodel assessment of future climatological droughts in the United Kingdom. *International Journal of Climatology*, 29(14), 2056-2071.

- Vilén, T. and P.M. Fernandes, 2011: Forest fires in Mediterranean countries: CO₂ emissions and mitigation possibilities through prescribed burning. *Environmental Management*, 48, 558-567.
- Villarini, G., J.A. Smith, F. Serinaldi, and A.A. Ntelekos, 2011: Analyses of seasonal and annual maximum daily discharge records for Central Europe. *Journal of Hydrology*, 399(3-4), 299-312.
- Vinagre, C., F.D. Santos, H. Cabral, and M.J. Costa, 2011: Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. *Regional Environmental Change*, 11(4), 779-789.
- Virkkala, R., R.K. Heikkinen, S. Fronzek, H. Kujala, and N. Leikola, 2013: Does the protected area network preserve bird species of conservation concern in a rapidly changing climate? *Biodiversity and Conservation*, 22(2), 459-482.
- Vorogushyn, S., K.E. Lindenschmidt, H. Kreibich, H. Apel, and B. Merz, 2012: Analysis of a detention basin impact on dike failure probabilities and flood risk for a channel-dike-floodplain system along the river Elbe, Germany. *Journal of Hydrology*, 436-437, 120-131.
- Vos, C.C., P. Berry, P. Opdam, H. Baveco, B. Nijhof, J. O'Hanley, C. Bell, and H. Kuipers, 2008: Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. *Journal of Applied Ecology*, 45(6), 1722-1731.
- Wade, S.D., J. Rance, and N. Reynard, 2013: The UK climate change risk assessment 2012: assessing the impacts on water resources to inform policy makers. Water Resources Management, 27(4), 1085-1109.
- Wall, R. and L.S. Ellse, 2011: Climate change and livestock parasites: integrated management of sheep blowfly strike in a warmer environment. Global Change Biology, 17(5), 1770-1777.
- Walther, G.R., A. Roques, P.E. Hulme, M.T. Sykes, P. Pyšek, I. Kühn, M. Zobel, S. Bacher, Z. Botta-Dukát, H. Bugmann, B. Czúcz, J. Dauber, T. Hickler, V. Jarošík, M. Kenis, S. Klotz, D. Minchin, M. Moora, W. Nentwig, J. Ott, V.E. Panov, B. Reineking, C. Robinet, V. Semenchenko, W. Solarz, W. Thuiller, M. Vilà, K. Vohland, and J. Settele, 2009: Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24(12), 686-693.
- **Wamsler**, C. and N. Lawson, 2011: The role of formal and informal insurance mechanisms for reducing urban disaster risk: a South-North comparison. *Housing Studies*, **26(2)**, 197-223.
- Wang, S., R. McGrath, T. Semmler, and P. Nolan, 2006: The impact of the climate change on discharge of Suir River Catchment (Ireland) under different climate scenarios. Natural Hazards and Earth System Science, 6(3), 387-395.
- Wang, S., R. McGrath, J. Hanafin, P. Lynch, T. Semmler, and P. Nolan, 2008: The impact of climate change on storm surges over Irish waters. *Ocean Modelling*, 25(1-2), 83-94.
- Ward, P., H. Renssen, J. Aerts, and P. Verburg, 2011: Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe). Climatic Change, 106(2), 179-202.
- Ward, R.E.T., C. Herweijer, N. Patmore, and R. Muir-Wood, 2008: The role of insurers in promoting adaptation to the impacts of climate change. *The Geneva Papers*, 33, 133-139. doi:10.1057/palgrave.gpp.2510153.
- Wasowski, J., C. Lamanna, and D. Casarano, 2010: Influence of land-use change and precipitation patterns on landslide activity in the Daunia Apennines, Italy. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), 387-401.
- Watkiss, P. and A. Hunt, 2010: Review of Adaptation Costs and Benefit Estimates in Europe for SOER 2010. Report prepared by Metroeconomica Economic and Environmental Consultants and Paul Watkiss Associates for the European Environment Agency (EEA) under the Framework contract for economic support (EEA/IEA/09/002) – Lot 2 'Climate change adaptation: costs and benefits', Metroeconomica, Bath, UK, 74 pp.
- Weber, R.W.S., 2009: An evaluation of possible effects of climate change on pathogenic fungi in apple production using fruit rots as examples. *Erwerbs-Obstbau*, 51(3), 115-120.
- Wedawatta, G.S.D. and M.J.B. Ingirige, 2012: Resilience and adaptation of small and medium-sized enterprises to flood risk. *Disaster Prevention and Management*, 21(4), 474-488.
- Wessel, W., A. Tietema, C. Beier, B. Emmett, J. Penuelas, and T. Riis-Nielson, 2004: A qualitative ecosystem assessment for different shrublands in Western Europe under impact of climate change. *Ecosystems*, 7, 662-671.
- Wessolek, G. and S. Asseng, 2006: Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. European Journal of Agronomy, 24(4), 333-342.

- West, J.S., J.A. Townsend, M. Stevens, and B.D.L. Fitt, 2012: Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. *European Journal of Plant Pathology*, 133, 315-331.
- Westerhoff, L., E.H. Keskitalo, and S. Juhola, 2011: Capacities across scales: local to national adaptation policy in four European countries. *Climate Policy*, 11(4), 1071-1085.
- Wethey, D.S., S.A. Woodin, T.J. Hilbish, S.J. Jones, F.P. Lima, and P.M. Brannock, 2011: Response of intertidal populations to climate: effects of extreme events verses long term change. *Journal of Experimental Marine Biology and Ecology*, 400(1-2), 132-144.
- White, M.A., P. Whalen, and G.V. Jones, 2009: Land and wine. *Nature Geoscience*, 2, 82-84.
- Whitehead, P.G., R.L. Wilby, R.W. Battarbee, M. Kernan, and A.J. Wade, 2009: A review of the potential impacts of climate change on surface water quality. *Hydrological Sciences Journal*, 54(1), 101-123.
- Whittle, R., W. Medd, H. Deeming, E. Kashefi, M. Mort, C. Twigger Ross, G. Walker, and N. Watson, 2010: After the Rain Learning the Lessons from Flood Recovery in Hull. Final Project Report for 'Flood, Vulnerability and Urban Resilience: a real-time study of local recovery following the floods of June 2007 in Hull', Lancaster University, Lancaster, UK, 171 pp.
- WHO, 2008: Heat-Health Action Plans: Guidance [Matthies, F., G. Bickler, N. Cardeñosa Marín, and S. Hales (eds.)]. World Health Organisation (WHO) Regional Office for Europe, Copenhagen, Denmark, 45 pp.
- WHO, 2013: Floods in the WHO European Region: Health Effects and their Prevention [Menne, B. and V. Murray (eds.)]. World Health Organization (WHO) Regional Office for Europe, Copenhagen, Denmark, 134 pp.
- Wiering, M.A. and B.J.M. Arts, 2006: Discursive shifts in Dutch river management: 'deep' institutional change or adaptation strategy? In: *Living Rivers: Trends and Challenges in Science and Management* [Leuven, R.S.E.W., A.M.J. Ragas, A.J.M. Smits, and G. Velde (eds.)]. Springer, Dordrecht, Netherlands, pp. 327-338.
- Wilby, R.L., 2008: Constructing climate change scenarios of urban heat island intensity and air quality. Environment and Planning B: Planning and Design, 35(5), 902-919.
- Wilkinson, P., K.R. Smith, M. Davies, H. Adair, B.G. Armstrong, M. Barrett, N. Bruce, A. Haines, I. Hamilton, T. Oreszczyn, I. Ridley, C. Tonne, and Z. Chalabi, 2009: Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. *The Lancet*, 374(9705), 1917-1929.
- Willems, P., J. Olsson, K. Arnbjerg-Nielsen, S. Beecham, A. Pathirana, I. Bülow Gregersen, H. Madsen, and V. Nguyen, 2012: *Impacts of Climate Change* on *Rainfall Extremes and Urban Drainage*. IWA Publishing, London, UK, 226 pp.
- Wilson, A.J. and P.S. Mellor, 2009: Bluetongue in Europe: past, present and future. *Philosophical Transactions of the Royal Society B*, **364(1530)**, 2669-2681.
- Wilson, D., H. Hisdal, and D. Lawrence, 2010: Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections. *Journal* of *Hydrology*, 394(3-4), 334-346.
- Wilson, E., 2006: Adapting to climate change at the local level: the spatial planning response. *Local Environment*, **11(6)**, 609-625.
- Wilson, G., 2008: Our knowledge ourselves: Engineers (re)thinking technology in development. *Journal of International Development*, **20(6)**, 739-750.
- **WLO**, 2006: *Welvaart en Leefomgeving: Een Scenariostudie voor Nederland in 2040* [Janssen, L.H.J.M., V.R. Okker, and J. Schuur (eds.)]. Central Planning Bureau, Netherlands Environmental Assessment Agency and Spatial Planning Bureau, The Hague, Netherlands, 239 pp. (in Dutch).
- WMO, 2011: Climate Knowledge for Action: A Global Framework for Climate Services Empowering the Most Vulnerable. WMO-No. 1065, Report of the High-Level Taskforce for the Global Framework for Climate Services, World Meteorological Organization (WMO), Geneva, Switzerland, 240 pp.
- Wong, W.K., B. Stein, E. Torill, H. Ingjerd, and H. Hege, 2011: Climate change effects on spatiotemporal patterns of hydroclimatological summer droughts in Norway. *Journal of Hydrometeorology*, 12(6), 1205-1220, doi:10.1175/2011JHM1357.1.
- **Wreford**, A., D. Moran, and N. Adger, 2010: *Climate Change and Agriculture. Impacts, Adaptation and Mitigation*. OECD Publishing, Paris, France, 135 pp.
- Yiou, P., P. Ribereau, P. Naveau, M. Nogaj, and R. Brazdil, 2006: Statistical analysis of floods in Bohemia (Czech Republic) since 1825. *Hydrological Sciences Journal*, 51(5), 930-945.
- Zachariadis, T., 2010: Forecast of electricity consumption in Cyprus up to the year 2030: the potential impact of climate change. *Energy Policy*, **38(2)**, 744-750.

- **Zhou**, Q., P.S. Mikkelsen, K. Halsnæs, and K. Arnbjerg-Nielsen, 2012: Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. *Journal of Hydrology*, **414-415**, 539-549.
- **Zsamboky**, M., A. Fernandez-Bilbao, D. Smith, J. Knight, and J. Allan, 2011: *Impacts of Climate Change on Disadvantaged UK Coastal Communities*. Joseph Rowntree Foundation, York, UK, 62 pp.
- Zwicke, M., G.A. Alessio, L. Thiery, R. Falcimagne, R. Baumont, N. Rossignol, J. Soussana, and C. Picon-Cochard, 2013: Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies. *Global Change Biology*, 19(11), 3435-3448, doi:10.1111/gcb.12317.